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The	General	Idea

} Simple	discrete	two-dimensional	predator-prey	models	
based	on	this	form	(JM	Smith	1968):

𝑥!"# = 𝑎𝑥! −
$%#
&

𝑥!' − 𝑐𝑥!𝑦!
𝑦!"# =

$
&
𝑥!𝑦!

} We	introduce	a	constant	rate	of	mutation	to	study	the	
emergence	of	a	simple	ecosystem	with	stable	dynamics	
from	a	single	initial	species.

} Three	versions	will	be	considered.



Model	Features

Global	Features Version-specific	Features

} Prey	𝑥 uses	logistic	growth.
} 𝑥 produces	a	child,	𝑦,	by	
constant	mutation.

} 𝑦 predates	upon	𝑥.
} Lotka-Volterra (linear)	predator	
functional	response.

} Three	parameters:
} Mutation	rate	𝑝 fixed	at	10!"

} Reproductive	control	parameter	𝑟
} Predation	rate	c
} (𝑐, 𝑟) is	the	2D	parameter	space.	

} In	two	cases,	𝑥 and	𝑦 are	
similar	enough	to	be	in	
competition	for	shared	
resources.

} In	two	cases,	𝑦may	survive	
independently,	but	it’s	growth	
parameter	is	increased	by	the	
availability	of	𝑥 to	feed	upon.



Two-Dimensional	Models

} Model	1

} Model	2

} Model	3

𝑥!"# = 1 − 𝑝 𝑟𝑥! 1 − 𝑥! − 𝑦! − 𝑐𝑥!𝑦!
𝑦!"# = 𝑝𝑟𝑥! 1 − 𝑥! − 𝑦! + 𝑟𝑥!𝑦!

𝑥!"# = 1 − 𝑝 𝑟𝑥! 1 − 𝑥! − 𝑦! − 𝑐𝑥!𝑦!

𝑦!"# = 𝑝𝑟𝑥! 1 − 𝑥! − 𝑦! +
2𝑟
3 (1 + 𝑥!)𝑦! 1 − 𝑥! − 𝑦!

𝑥!"# = 1 − 𝑝 𝑟𝑥! 1 − 𝑥! − 𝑐𝑥!𝑦!

𝑦!"# = 𝑝𝑟𝑥! 1 − 𝑥! +
𝑟
2 (1 + 𝑥!)𝑦! 1 − 𝑦!
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Results	for	𝑝 = 10!"
(Maximal	Lyapunov Exponent)
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} Purple	=	Extinction.
} Blue	=	𝑦-only	period	1	(axial	fixed	point).
} Green	=	Coexistence	period	1	(interior	fixed	

point).
} Orange	=	2D	quasiperiodicity.
} Gold	=	2D	periodicity.
} Yellow	=	2D	chaos.



Model	1	– Predator	Fraction	of	the	Population
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When	𝑝 = 0,	interior	
fixed	point	has	form:

𝑥∗, 𝑦∗ =
1
𝑟
,
𝑟 − 2
𝑟 + 𝑐



The	Benefits	of	Self-Limitation

For	0.63 < 𝑐 < 0.79,	period-1	
coexistence	(green)	extends	to	𝑟 = 4,	
where	if	the	predator	did	not	exist,	𝑥’s	
population	would	chaotically	oscillate	
and	visit	values	arbitrarily	close	to	zero.
E.g.	at (𝑐 = 0.64, 𝑟 = 4), 𝑥∗ = 0.105.

Similarly,	the	mutant	predator	stabilises	
the	dynamics	for	subregions of	1.5 <
𝑐 < 6, 3.6 < 𝑟 < 4.	Dependent	on	I.C.’s	
and	the	precise	value	of	𝑟,	there	may	
also	be	stable	coexistence	for	𝑟 > 4,	
where	𝑥 alone	would	perish.

Model	2 Model	3



Model	3	Zoom
Blue	=	𝑦-only	period	1	
(axial	fixed	point	(0, 𝑦∗)).

Yellow	=	2D	chaos.

Gold	=	2D	periodicity.

Orange	=	2D	
quasiperiodicity.

Green	=	Coexistence	period	
1	(stable	interior	fixed	
point).
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Feigenbaum
Diagram
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Lyapunov
Exponents

Model	3,	𝑐 = 0.65



Example	Strange	Attractor
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𝑟 = 3.9300 𝑟 = 3.9325 𝑟 = 3.9350

Model	3,	𝑐 = 0.65



Hyperchaos (Model	3)	

Region	of	Hyperchaos Example	Hyperchaotic Attractor

𝑐 = 0.082, 𝑟 = 3.846
𝜆# ≃ 0.153, 𝜆% ≃ 0.102

(𝑐, 𝑟) parameter	space,	with	
𝜆#, 𝜆% > 10&'



Analytic	Results	for	Model	3
} Analytic	results	are	obtained	in	the	limiting	
case	𝑝 → 0:
} 𝑥"#$ = 𝑟𝑥" 1 − 𝑥" − 𝑐𝑥"𝑦"
} 𝑦"#$ =

%
&
(1 + 𝑥")𝑦"(1 − 𝑦")

} Using	the	Jury	conditions,	plot	the	
boundaries	of	the	interior	fixed	point’s	
stable	region	(6th order	polynomials):
} (a)	1 + 𝑡𝑟(𝐽 𝑥∗, 𝑦∗ + 𝑑𝑒𝑡 𝐽 𝑥∗, 𝑦∗ > 0
} (b) 1 − 𝑡𝑟(𝐽 𝑥∗, 𝑦∗ + 𝑑𝑒𝑡 𝐽 𝑥∗, 𝑦∗ > 0
} (c) 1 − 𝑑𝑒𝑡 𝐽 𝑥∗, 𝑦∗ > 0

} Along	with	the	boundary	of	𝑥' = 0 given	
our	I.C.’s	(for	𝑝 = 0:	𝑥( = 𝑦( = 0.1),	they	
align	with	the	edges	of	the	region	where	the	
fixed	point	 𝑥∗, 𝑦∗ is	the	post-transient	
result	of	numerical	simulations.

Jury	condition	boundary	curves	(𝑝 = 0)

Stable	region
(𝑎)

(𝑐)



Conclusion

} Simple	discrete	2-d	models	display	dynamic	phenomena	including	
hyperchaos,	Neimark-Sacker	bifurcation,	quasiperiodic	orbits	and	Arnol’d
tongues.

} Such	models	also	show	examples	of	beneficial	self-limitation	for	the	
parent-prey	species	- producing	a	mutant	predator	can	stabilise	the	
population	dynamics	where	there	would	otherwise	be	chaotic	
fluctuations	or	extinction.

} A	stable	two-dimensional	predator-prey	relationship	can	be	established,	
starting	from	a	single	species.	

} The	analytic	intractability	of	the	model	suggests	that	this	concept	would	
be	best	scaled	to	larger	systems	through	computational	stochastic	eco-
evolutionary	models	of	food	web	assembly	(Drossel et	al	2001,	Loeuille
and	Loreau 2005,	Yoshida	2003,	Allhoff et	al	2015).
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Appendix	I	– Effect	of	parameter	variation:
} Other	values	of	𝑝:	increasing	𝑝 (tested	0.1 and	0.25)	compresses	the	region	of	
co-survival,	and	begins	to	flatten	these	regions	against	the	axes.	Quasiperiodicity	
is	introduced	to	Model	1.

} The	effect	of	no	mutation	– have	also	tested	p=0	to	see	if	mutation	really	has	an	
effect	(and	how	reasonable	it	is	to	look	at	the	limiting	case).	This	results	in	
smoothing	of	the	fractured	boundaries,	the	creation	of	new	extinction	regions	
beyond	𝑟 = 4,	and	separation	of	the	fixed-point	region	to	create	an	intermittent	
region	where	𝑥 alone	survives.

} Other	initial	conditions:	tested	𝑥' = 0.3,	kept	𝑦' at	0 (in	keeping	with	the	nature	
of	the	model).	This	has	little	effect	except	non-qualitative	alterations	to	the	
broken	boundary	of	coexistence	in	Model	3.

} Did	also	test	predator	reproductive	ratios	of	 ⁄( " for	Model	3	and		¾ for	both	
Models	2	and	3	for	consistency.	Changing	Model	2	further	has	little	effect	of	
interest,	but	some	things	happen	to	model	3	as	this	parameter	increases:	mainly,	
the	encroaching	blue	ovals	of	1d	collapse	become	wider	and	better	defined	in	r	
and	move	closer	to	the	axes	(hence	the	smaller	region	of	coexistence	for	Model	2	
in	the	presented	results),	and	ovals	of	extinction	move	into	this	interface	and	
become	much	more	prominent.		We	do	not	focus	on	these	versions.



Appendix	II	– Model	justification:

} Inspiration	for	model	justification:	JM	Smith’s	
textbook	“Mathematical	Ideas	in	Biology”	1968,	
also	used	as	an	example	in	YA	Kuznetsov’s textbook	
“Elements	of	Applied	Bifurcation	Theory”	2013.



Appendix	III	– Lyapunov exponent	algorithm:

} From	Sprott’s “Chaos	and	Time-Series	Analysis”:

} 𝑥!"# = 𝑓 𝑥!, 𝑦! ; 𝑦!"# = 𝑔 𝑥!, 𝑦!

} 𝑦$!"# =
%"&''(
(")''(

,	where	𝐽! =
𝐴 𝐵
𝐶 𝐷 = -

𝑓* 𝑓'
𝑔* 𝑔' (*(,'()

} Then	𝜆# = lim
!→/

#
0!
∑12#! log ((")''))

*"(%"&''))
*

#"'')
*



Appendix	IV	– More	realistic	model:

} Model	improvements	(although	just	a	“pure	predator”	
model:	
} A	Ricker-based	two-species	bioenergetic consumer-
resource	predator-prey	model	with	Holling Type	II	
response,	a	constant	rate	of	mutation,	and	𝑦 feeds	on	the	eggs	
of	𝑥

} 𝑥!"# = max 0, 1 − 𝑝 1 − 3')
#"*)4* +,-)

𝑥!𝑒5 #6*) ,

} 𝑦!"# = max 0, 𝑥!𝑒5(#6*)) 1 + 3')(768)
#"*)4*(+,-))

,

where	𝜆 is	ecological	efficiency.
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