Stability in ecological meta-community models

Dr Gavin M Abernethy

Computing Science and Mathematics University of Stirling

October 2022

Contents

Overview of community and population modelling;

2 An eco-evolutionary meta-community model;

Some implications for stability analysis and applications;

Future directions.

Ecological models: overview

We may be familiar with two-species models in population dynamics:

Predator-prey model

Prey:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)x - g(x,y)y$$

Predator:
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda g(x, y)y - dy$$

e.g. with logistic prey growth and Lotka-Volterra predation. . .

Prey:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = rx(1-x) - cxy$$
dator: $\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda cxy - dy$

Predator:
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda cxy - dy$$

Ecological models: overview

• Community (foodweb) model: multiple interacting species.

• Meta-population model: single species, multiple patches.

Ecological models: overview

• Meta-community model: multiple species, multiple patches.

 Eco-evolutionary model: mutation/speciation, adaptive dynamics.

 Community assembly model: multiple species, new species invade from pre-existing pool.

Eco-evolutionary meta-community models

Combine all three features:

- Mutation and evolutionary effects
- Space
- Multiple species

Conceptual challenges:

- How to define species (one vs. multiple traits)?
- Dynamically determine feeding relationships (based on traits)?
- Network structure of the spatial landscape?
- Dispersal mechanism (diffusion, probabilistic, adaptive)?
- Population dynamics (reproduction, functional response)?
- Does the ruleset result in plausible foodweb structures?

An eco-evolutionary meta-community model

Species are defined by a bodysize and discrete set of traits that score against other traits. Begin with one species, and resources in each patch on a square $N \times N$ lattice. Simulation occurs in nested loops:

- **Evolutionary loop:** choose a parent species and introduce mutant (with 9/10 of parent's traits and similar bodysize).
 - Ecological loop: feeding, reproduction, death, dispersal.
 - Foraging loop: local populations adaptively decide feeding strategies (avoid competition, prefer populous prey).

Developed from the Webworld foodweb model (Drossel et al 2001).

Ecological loop (feeding, reproduction, death, dispersal)

At time t, population dynamics of species i in patch (x, y) obeys:

$$N_{i,x,y}^{t} \mapsto N_{i,x,y}^{t} + \Delta \left(-d_{0}s_{i}^{-0.25}N_{i,x,y}^{t} + \lambda s_{i}^{-1}N_{i,x,y}^{t} \sum_{j=0}^{n} g_{i,j}s_{j} - \sum_{k=1}^{n} N_{k,x,y}^{t}g_{k,i} \right)$$

Loss due to mortality. Gains due to feeding. Loss due to predation. s_i is bodysize; $\lambda = 0.3$ is ecological efficiency; $g_{i,j}$ is ratio-dependent response on j.

Subsequently, migration from and to neighbouring patches:

$$\textit{N}_{i,\mathsf{x},\mathsf{y}}^t \mapsto \textit{N}_{i,\mathsf{x},\mathsf{y}}^t + \Delta \bigg(\textit{N}_{i,\mathsf{x},\mathsf{y}}^t + \sum_{j=1}^{\mathsf{x}_{\max}} \sum_{k=1}^{y_{\max}} \mu_{i,j,k,\mathsf{x},\mathsf{y}} \textit{N}_{i,j,k}^t - \sum_{j=1}^{\mathsf{x}_{\max}} \sum_{k=1}^{y_{\max}} \mu_{i,\mathsf{x},\mathsf{y},j,k} \textit{N}_{i,\mathsf{x},\mathsf{y}}^t \bigg)$$

Dispersal rate μ increases in patches where population is declining.

Example ensembles

Simulation generates a meta-community of co-evolved species.

Figure 1: Foodwebs in 6×6 spatial network (colours denote trophic role)

Foodweb structure and stability

Figure 2: Local foodweb properties (colours relate to model configuration)

- How does the number of realised feeding links L depend on diversity S? Connectance (L/(S(S-1))) decreases with diversity.
- **Stability:** Community robustness increases with connectance.

Species extinction and invasion

Figure 3: Effects of extinction, invasion and displacement

- Each species is deleted, (max loss 2.1%) then re-introduced to *all* patches (max loss 12%).
- Displacement to neighbouring patches can be more damaging than extinction.

Habitat loss and nature reserves

Patches are subjected to repeated random disturbances, except for 6 (of 36) designated as nature reserves. What is the best choice?

Figure 4: Biodiversity loss due to perturbation of random patch sequences

- Reliable to select patches with the greatest biodiversity or to protect the rarest species.
- If disturbed populations are displaced (rather than eliminated), isolating large, remote areas from invasion also effective.

Outlook¹

Summary:

- Models with simple evolutionary rules re-create complex network structure with improved stability.
- Can inform environmental efforts by determine principles for which sites and species are most vulnerable to perturbation.

Challenges:

- Validation from empirical data?
- Species-area curve and mixed range of species (neither spatially-homogeneous, nor total species-sorting).
- Limited conclusions from abstract models for specific ecosystems.

Future work: strand I

- Simplified trait-space with explicit specialist-generalist trade-off;
- Multi-scale species perceptions of habitat;
- Role of scaling patterns in habitat structure and its removal.

Future work: strand II

Application to management of water vole, mink and otter meta-communities in South Yorkshire:

- Collaboration with Sheffield Hallam University and the Sheffield and Rotherham Wildlife Trust;
- Simplified community model three-species population dynamics;
- Highly-resolved spatial network from GIS data;
- Application to predicted impact of habitat perturbation.

References

- Original model: Drossel, B., Higgs, P. G., & McKane, A. J. (2001). The influence of predator—prey population dynamics on the long-term evolution of food web structure. *Journal of Theoretical Biology*, 208(1), 91-107.
- Abernethy, G. M. (2020). Allometry in an eco-evolutionary network model. *Ecological Modelling*, 427, 109090.
- Abernethy, G. M. (2021). Sequences of patch disturbance in a spatial eco-evolutionary model. Communications in Nonlinear Science and Numerical Simulation, 97, 105746.
- Review: Gross et al. (2020). Modern models of trophic meta-communities. Philosophical transactions of the Royal Society B, 375: 20190455.