Dynamics of lockdown simulations and COVID-19 in Northern Ireland

Dr Gavin M Abernethy

Engineering and Mathematics Department Research Seminar:
Digital Health Technologies,
Sheffield Hallam University

2022

Contents

- Developing a compartmental model for Covid-19.
- 2 Parameterising for Northern Ireland.
- Using the fitted model to simulate hypothetical lockdowns.

Compartmental modelling: SIR

Start as **susceptible**, become **infected**, then **recover**.

Figure 1: SIR model

Change in size of each sub-population given by an ODE:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{1}{N}\beta SI$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{1}{N}\beta SI - \gamma I$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \gamma I$$

where N = S + I + R is the total population.

Compartmental modelling: SEIRD and SEIIRD

Include **exposed** compartment for a latency period. Record the fraction of those infected who become **deceased**.

Infectious cases can be separated by severity of symptoms: **Subclinical** (no symptoms) may progress to **Clinical**.

Figure 2: SEIRD model

Figure 3: SEIIRD model

Compartmental modelling: SEIIRD with hospitalisation

For comparison with DoH data and for projecting healthcare demands, track numbers in **hospital** (H_1) and **ICU** (H_2) as separate compartments.

Figure 4: SEIIRD model with hospitalisation

Compartmental modelling: Age-structured SEIIRD

COVID-19's effects on these clinical outcomes varies strongly with age.

Split the population into 20-year age class i = 1, ..., 5 and track the numbers of each age class in each compartment (40 ODEs).

Figure 5: SEIIRD model with hospitalisation and age-structure

Parameterising for the Northern Ireland population

Most parameters can be determined from existing literature, but transmission rate β may vary during lockdowns, social distancing.

Figure 6: 7-day rolling average hospital admissions

Fit β in intervals (based on gov. policies) using the 7-day rolling average of daily hospital admissions for each age class from DoH.

Cumulative deaths and healthcare demand

Figure 7: Hospital and ICU occupancy and cumulative deaths

- 9.5% had contracted COVID-19 by February 2021.
- Winter "circuit breaks" less effective than March lockdown.

Effective reproductive number R_t

Figure 8: Dependence of R_t on immune fraction of the population

From average transmission rates in Spring 2020 (Fig. 8(a)) and Autumn 2020 - Spring 2021 outside of lockdowns (Fig. 8(b)), 80.4% or 42% must be immune to prevent spread ($R_t < 1$).

Effectiveness of a single lockdown by strength and duration

Figure 9: Cumulative deaths with optimally-timed single lockdown

- Shielding only the most vulnerable may be more effective than locking down the whole population.
- But only if it is strong enough and lasts past peak incidence.

Lockdowns mechanistically-triggered by hospital occupancy

How can we use simulations to inform future pandemic response?

Simulate lockdowns activated by an observable trigger:

- Treating NI as a closed system, or daily adding one new case.
- Either one or multiple lockdowns permitted.
- Three strengths and durations of lockdown.
- Trigger: current hospital occupants or new daily deaths.
- Parameter space: how many inpatients (0-2000) or deaths (0-200) trigger lockdown; how many days (0-20) of delay.

Mechanistically-triggered lockdowns

Without vaccination, herd immunity is the exit strategy. Time the lockdown to minimise excess spread over the threshold (40-45%).

Figure 10: Cumulative deaths with one lockdown triggered by daily deaths

- Strongest lockdown, intermediate delay (zero impact if too late).
- Act sooner to minimise peak inpatients/ICU instead.
- **Closed systems:** greater danger from too-low thresholds. Why?

Peculiarities of a closed system model

In a closed system, the strongest and fastest lockdowns *appear* optimal until the simulation fully "plays out" with a resurgence:

Figure 11: Cumulative deaths recorded after 2000 days with <u>multiple</u> lockdowns triggered by number of hospital inpatients

With a vaccination programme, the exit strategy shifts - it becomes truly best to maximally lockdown as fast as possible.

Summary

- Single-lockdown restrictions targeting the more vulnerable may be more effective, but only if sufficient that the virus spreads then dissipates in the remaining population.
- Without a vaccine exit strategy, locking down too strong and too early in an isolated community can lead to resurgence when restrictions are lifted, with worse overall outcomes.
- Earlier interventions better reduce peak healthcare demands, while later interventions are more effective at reducing deaths.

References and Acknowledgements

Abernethy, Gavin M., and David H. Glass. "Optimal COVID-19 lockdown strategies in an age-structured SEIR model of Northern Ireland." *Journal of the Royal Society Interface*, 19:188 (2022). DOI: 10.1098/rsif.2021.0896

Department of Health (NI) Covid-19 data: https://www.health-ni.gov.uk/articles/covid-19-dashboard-updates

Special thanks to Xu Xu, Ros Porter and Angharad Ugonna.

Work undertaken initially as part of a UKRI funding bid with Health and CS, and then completed during the ECRF at SHU.