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Introducing dynamical systems

Dynamical systems

A set of possible states together with a rule that determines the
present state of the system in terms of past states.

Continuous-time dynamical systems:

Modelled by differential equations.

Example: logistic equation

dx

dt
= rx(1− x)

Useful as a simple model of a (normalised) ecological population with
limited resources.
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Introducing dynamical systems

Discrete-time dynamical systems

a

Modelled by difference equations (maps).

Example: logistic map

xn+1 = rxn(1− xn)

a

Better represent a population that reproduces in discrete generations.
Typically richer behaviour than their continuous-time counterparts.

Example: Hénon map

xn+1 = 1− ax2n + yn

yn+1 = bxn
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Introducing dynamical systems

Fundamental concepts of discrete dynamical systems

Given space X (e.g. R or R2), the map is encoded by a (possibly
vector-valued) function f : X → X .

Given initial point (or state) x0 ∈ X , then the set of points visited:

{x0, x1, x2, . . . , xn, . . . }

is the orbit of x0 under f, where xn+1 = f(xn). That is, the orbit is:

{x0, f(x0), f2(x0), f3(x0), . . . }

Example: the orbit of x0 = 0.3 under the doubling map f (x) = 2x is:

{0.3, 0.6, 1.2, 2.4, 4.8, . . . }

Typically we are concerned only with the long-term (limiting)
behaviour of the system, rather than transient states.
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Fixed points

What is a fixed point of the system?

This is a state x∗ such that f(x∗) = x∗ (a point that maps to itself).

For example, for the logistic map xn+1 = rxn(1− xn), fixed points are
given by setting xn = xn+1 = x and solving:

x = rx(1− x)

Then either x = 0, or (if r 6= 0):

1

r
= 1− x =⇒ x = 1− 1

r

Ecologically: zero starting population remains at zero!
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Fixed points

Stability of fixed points

A key concern in dynamical systems is the stability of a fixed point. If
the system is perturbed, will it return to the fixed point or not?

Consider a ball placed at the bottom of a smooth bowl, there it will
remain - a fixed point of the system. If we push it slightly away, it
will roll back again - a stable fixed point.

Alternatively, balance the ball atop a smooth hill. A disturbance in
any direction will cause it to roll further (the perturbation is
magnified) and not return. This is an unstable fixed point.
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Fixed points

Stability - ecological significance

For our single population (e.g. arvicola) governed by the logistic
map, stability has an important meaning.

If r = 2, the non-zero fixed point 1− 1
r (more generally, state state or

equilibrium) is at 1− 1
2 = 1

2 of the maximum density. But what
happens if you step on one?

Can the population recover or are they doomed? An unstable steady
state has little relevance to the real world where the population will
constantly be subject to perturbations.
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Fixed points

Linear stability analysis in 1D discrete-time systems

Stability criterion for fixed points of xn+1 = f (xn):

The fixed point x = x∗ is stable if: |f ′(x∗)| < 1

Let xn = x∗ + ε, then by the Taylor expansion about the fixed point:

xn+1 = f (xn) = f (x∗ + ε)

= f (x∗) + f ′(x∗)ε+
1

2!
f ′′(x∗)ε2 + . . .

Close to x∗, initial error ε is small, so the nonlinear terms ε2, ε3, . . .
will be relatively tiny. Thus the ratio of the new error to old is:∣∣∣∣xn+1 − x∗

xn − x∗

∣∣∣∣ ≈ |f ′(x∗)|
This is linear stability analysis.
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Fixed points

Linear stability analysis in 1D discrete-time systems

Applying this to the logistic map:

f (x) = rx(1− x) = rx − rx2 =⇒ f ′(x) = r − 2rx = r(1− 2x)

So x∗ = 0 is stable if |r(1− 0)| < 1, that is if 0 < r < 1.

And the non-zero fixed point x∗ = 1− 1

r
is stable if:∣∣∣∣r(1− 2

(
1− 1

r

))∣∣∣∣ < 1 =⇒ if |2− r | < 1

That is, if:
1 < r < 3
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Attractors

Stable fixed points as attractors

What happens if we start our orbit near to a stable fixed point? From
the time-series, the orbit is attracted to the currently stable fixed
point in the logistic map:

So what happens when the non-zero fixed point also becomes
unstable at r = 3?
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Attractors

Periodic orbits and equilibria

The system instead converges to a periodic orbit, with period 2. Now
the attractor (the set of points constituting the limiting behaviour)
is a set of two points instead of one.

Increasing r , the system converges instead to a period-4 orbit:

What happens if we increase r even further?
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Bifurcation theory

Feigenbaum diagram

Plotting the attractor (the limiting set of points) against control
parameter r for the logistic map yields this famous image:

(For r > 4, the system is unbounded with negative populations.)
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Bifurcation theory

Feigenbaum diagram

This is a bifurcation diagram (bifurcation - a fundamental change in
the limiting behaviour of the system).

Also known as a Feigenbaum diagram after the US physicist.
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Bifurcation theory

Feigenbaum’s constant and universality

As r increases, period-doubling bifurcations occur more frequently.
Let rn be the value of r where the nth bifurcation occurs. Then. . .

Feigenbaum’s constant:

δ = lim
n→∞

rn − rn−1
rn+1 − rn

= 4.6692016 . . .

This holds for a wider class of unimodel maps (universality), perhaps
the most significant mathematical discovery using a calculator.
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Bifurcation theory

Chaotic dynamics

What is going on in the limit as the period tends to infinity?

The orbit appears random, but it isn’t.
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Bifurcation theory

Chaos: sensitivity to initial conditions

What if we start with a small difference in our initial values?

The orbits rapidly appear totally unrelated (the butterfly effect).
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Bifurcation theory

Chaos: formal definition

Generally speaking, we define a dynamical system (with parameters
specified) as “chaotic” if all of the following properties hold:

Deterministic.

Sensitivity to initial conditions (we will soon see how to actually
define this).

Bounded (otherwise something like xn+1 = 2xn might fall within
the definition).

Not “asymptotically periodic” (i.e. approaching a periodic orbit).
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Bifurcation theory

2D ecological systems: fixed points and stability

Now consider a two-dimensional system, modelling two interacting species.
For example, a Lotka-Volterra model of a prey x and predator y :

xn+1 = F1(xn, yn) = rxn(1− xn)− cxnyn

yn+1 = F2(xn, yn) = λcxnyn + (1− d)yn

Again there may exist fixed points (x∗, y∗) where both populations remain
unchanged. Analysing the stability concerns the Jacobian matrix:

Jacobian matrix for two-dimensional maps

J(x , y) =

(∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

)

Then J(x∗, y∗) has two eigenvalues Λ1,Λ2, and the fixed point is stable and
attracting if |Λk | < 1, k = 1, 2.
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Bifurcation theory

2D ecological systems: fixed points

Like the logistic map, there can be fixed points - where the
population of prey xn and predators yn remains the same forever:

(a) Time-series (b) Attractor
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Bifurcation theory

Quasiperiodic orbits in 2D

We can also obtain periodic orbits, or increasing the prey growth rate
r can give a new kind of quasiperiodic behaviour (around the now
unstable fixed point):

(a) Time-series (b) Attractor
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Bifurcation theory

Chaotic orbits in 2D

We can again choose parameter values that yield a never-repeating
chaotic sequence of points (xn, yn):

Non-chaotic orbits were converging to some steady state. What does
the final set of points for this chaotic orbit look like when plotted?
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Bifurcation theory

Strange attractors

This is a strange attractor.

xn+1 = 3.98xn(1− xn)

− 4.02xnyn

yn+1 = 3.216xnyn

5 million plotted,
after discarding
15 million transients.
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Bifurcation theory

Strange attractors

Typically when the attracting sets of chaotic orbits are plotted, the
result in geometric terms is a fractal object, with non-integer
dimension, infinite detail and self-similarity.

Recall the Hénon map:

xn+1 = 1− ax2n + yn

yn+1 = bxn

and set a = 1.4, b = 0.3.
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Lyapunov exponents

Classifying chaos

To determine if a system is chaotic, boundedness and determinism
are easy to confirm. To classify “sensitivity to initial conditions”,
travelling along the orbit (xn)n, will a small separation between a
nearby orbit be magnified or diminished? That is, for small ε, do we
find on average:∣∣∣∣ f (xn + ε)− f (xn)

(xn + ε)− xn

∣∣∣∣ =
1

ε
|f (xn + ε)− f (xn)| > 1

By contrast, two orbits converging to the same regular attractor will
see their separation ratio tend to zero (or one).

Similar to how we derived a condition for stability of equilibria, this
concerns the derivative of the map at each point along the orbit.
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Lyapunov exponents

Lyapunov exponents

An n-dimensional map has a spectrum of n (not necessarily distinct)
global Lyapunov exponents. The maximal (or characteristic) such
exponent of the orbit (xn)n is the primary indicator of sensitivity.

Maximal global Lyapunov exponent

λ1 = lim
n→∞

1

n

n−1∑
k=0

ln
(
|f′(xk)|

)
If λ1 > 0, the average derivative along the orbit is greater than 1,
indicating that on average nearby orbits are moved further apart.

Provided our map is deterministic and bounded (as for f (x) = 2x , we
have λ1 = ln(2) ≈ 0.69 > 0), this can practically classify chaos.
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Lyapunov exponents

Global Lyapunov exponent for the logistic map

For the logistic map, recall
f ′(x) = r(1− 2x). Thus:

λ(r , x0) = lim
n→∞

1

n

n−1∑
k=0

ln
(
|r(1−2xk)|

)
This is precisely zero at a bifurcation
point. Note that, in principle, there
may be multiple attractors and the
initial state matters.

Observe λ > 0 for various values
r > 3.56995 corresponding to chaos.
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Lyapunov exponents

Lyapunov exponents in 2D systems

The maximal Lyapunov exponent can be calculate (practically, using
eigenvalues of the Jacobian matrix) for higher-dimensional systems.
Together with “is either population extinct”, this is a useful tool for
high-level classification of the system behaviour.

Consider this model:

xn+1 = max((1− p)rxn(1− xn)− cxnyn, 0)

yn+1 = max(prxn(1− xn) +
r

2
(1 + xn)yn(1− yn), 0)

This predator-prey model features a cannibalistic predator subspecies
which evolves directly from the prey species. It can survive
independently but reproduces faster when it can feed upon xn.
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Lyapunov exponents

Mutant cannibal models

Fixing p = 0.001 and examining part of the (c , r)-parameter space:

Red = y -only period 1
Orange = 2D chaos (λ1 > 0).
Yellow = 2D periodicity.
Green = 2D quasiperiodicity.
Blue = coexistence period-1.

x0 = 0.1, y0 = 0.0.

105 transients; 106 iterations.

In 2D, two different routes
to chaos. . .
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Lyapunov exponents

Mutant cannibal models: strange attractors
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Complex ecological models

Generalising ecological models

Returning to the continuous-time description of our two-species
standard model with general reproductive function f (e.g. logistic
model) and predator functional response g (e.g. Lotka-Volterra):

Predator-prey model

Predator:
dy

dt
= λg(x , y)y − dy

Prey:
dx

dt
= f (x)x − g(x , y)y

This can be extended in various ways with additional species, or
sub-populations separated by space. . .
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Complex ecological models

Generalising ecological models

Community
models

Meta-population
models

Eco-evolutionary
models

Meta-community
models

Eco-Evolutionary Meta-Community Models
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Complex ecological models

Eco-evolutionary meta-community models

Featuring:

Mutation and evolution

Multiple species

Spatial structure

Conceptual challenges:

Stability - how should we define stability of a whole ecosystem
over longer timescales? (e.g. “community robustness”)

How to define species (one vs. multiple traits)?

Dynamically determine feeding relationships (based on traits)?

Population dynamics (reproduction, functional response)?

Network structure of the spatial landscape?

Dispersal mechanism (diffusion, probabilistic, adaptive)?
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Complex ecological models

Eco-evolutionary community model: Example

Simulating evolutionary assembly of an ecological meta-community in
space from first species.

a a

For each local population N:

dN

dt
= F −M − P + µi − µe

where:

F = gains due to feeding;
M = natural mortality;
P = loss due to predation;
µe , µi = em/immigration.

a

Four local communities of a 6× 6 meta-communities.
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Complex ecological models
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