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1 Week 1

Advice:

• This material requires a solid understanding of algebra and transposition of equa-
tions.

• My suggestions for success:

– There are two key aspects to succeeding in mathematics at this level. You need
to know what the fundamental theory says, and you need to understand how
to apply it correctly.

– To know the first, you should be familiar with using the formula sheet (actually
read all of it!), but you should also make your own set of concise notes on
what you think is most important about each topic: rules, theorems, special
equations. Do your best to commit these to memory. You should also make
your own notes during class - do not rely on the online backup or those of a
friend. How you interpret and record your own notes is part of how you will
learn it.

– For the second, you must frequently practice tutorial questions from all parts
of the course. Try a question at least twice before checking the solution if stuck,
then make sure you can do it yourself without using the solution. If you don’t
understand, work through the questions in your lecture notes (this means that
you try to answer the question yourself rather than reading the entire solution
first). If you still don’t understand something, you must talk to me about it as
soon as possible.

– Finally, take part! I will ask you to help me with examples in class - just give it
a go! We are all here to learn, and we don’t expect to get everything right the
first time, as with developing any skill. So think about the problems as we are
working through them, ask questions, and try to answer even if you aren’t sure.
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1.1 Lecture 1: Radians, Trigonometric, Exponential and Log-

arithmic functions

1.1.1 Radians and Degrees

• Definition of radian: the angle subtended at the centre of a circle by an arc of equal
length to the radius of the circle. Denoted by a superscript lowercase “r” or “c”.

• Taking an arc to be the whole circumference of length 2πr, the angle of a whole
revolution is therefore 2π radians.

• To convert degrees to radians, multiply by π/180. To convert radians to degrees,
multiply by 180/π.

• Examples

Converting between radians and degrees:

360◦ = 2πc,

180◦ = πc,

1◦ =
π

180

c

,

30◦ = 30× π

180
=
π

6
= 0.5236c,

π

4

c

=
π

4
× 180

π
= 45◦

6



1.1.2 Trigonometric functions

• Trigonometric functions involve sin, cos and tan.

• We will study these functions in greater detail later in the course, but as we shall refer
to them frequently we need to be familiar with their shape and special properties.
The better you memorise their graphs, the easier it will be to work with them.

• Imagine a point on a unit circle centred at the origin. It starts at the position (1, 0),
and travels around the circumference of the circle in an anticlockwise direction. The
angle θ in radians measures the angle that it has rotated from it’s initial position on
the positive horizontal axis.
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• If we plot how the vertical and horizontal position of the point is going to vary as
a function of this angle θ that it has turned through, this gives us the two main
trigonometric functions: sin(θ) and cos(θ). Plotting the graphs of sine and cosine
using radians:

• Both vary between -1 and +1.

• At every integer multiple of π, the sine function crosses the horizontal axis so that:

sin(nπ) = 0

For any n ∈ Z

8



• The tangent function is defined as the ratio of the other two functions:

tan(θ) =
sin(θ)

cos(θ)

• The tan function has asymptotic behaviour at regular intervals.

• Periodicity: sine and cosine have period 2π, while tan has period π.

• There are many special connections between sine and cosine.

– The cosine curve is just the sine curve shifted left by π/2 radians.

– Other connections exist, such as the following trigonometric identities (given
in the Formula Booklet):

sin2(θ) + cos2(θ) = 1

sin(2θ) = 2 sin(A) cos(θ)

cos(2θ) = 2 cos2(θ)− 1

These relationships are true for any value of θ, which makes them identities
which are stronger than equations.
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1.1.3 Exponential and Logarithmic functions

• The exponential function is defined by the limit:

y = ex = lim
n→∞

(
1 +

x

n

)n
It may be written as y = ex or y = exp(x).

• The constant e, called Euler’s number (after Swiss mathematician Leonhard Eu-
ler, 1707-1783), can be found by setting x = 1 to be 2.71828 . . . It is one of the
fundamental mathematical constants (like π).

• This function was discovered by Swiss mathematician Jacob Bernoulli (1655-1705)
while studying compound interest: the definition comes from taking the limit as
compound interest is applied instantaneously to your money.

• An exponential function of time y = et is used to model exponential growth,
capturingthebehaviourofvariablesthatgrowwithincreasingratesuchascompound
interest, infectious disease spread, or population growth in ideal conditions.

• Change the sign of the independent variable in the index reverses the plot, and
this behaviour (exponential decay) is used to model the decay of the mass of a
radioactive substance.
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• The natural log function is y = loge(x) or y = ln(x). It is only valid for x > 0.

• It is the inverse of the exponential function, so if y = ex then x = ln(y). In other
words, logarithms are useful for telling us what the power or index to a given base
the input number would be.

• Becausethenatural log is the inverseof theexponential function, itsplot isequivalent
to that of the exponential function with the horizontal and vertical axes switched
around:

It is not defined for negative values of x, or at x = 0 where there is an asymptote.
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1.2 Lecture 2: Introduction to Differentiation

• Differentiationofafunctionyieldsthederivative,whichrepresentsthegradient/slope
of a function. This is equivalent to its rate of change.

• For example, given a function y(x) which depends on x, the derivative (which we

write as
dy

dx
describes the rate at which y is changing with respect to x.

• Example

The height of a ball thrown vertically upward:

Initially there is positive gradient as the height is increasing as the ball rises, then the
ball slows and the gradient decreases (but is still positive as the ball is still rising),
reaching a gradient of zero at the highest point, then a negative gradient as it falls.
Differentiation is a process by which we can find exactly this information.

Thus, if we had a formula for the height of this ball, for example a quadratic function
in terms of time s(t) = 0.2t(10 − t), then differentiating this function will give us
another function that describes not the height, but this rate at which the height is
changing (in other words, the velocity of the ball!) at any particular time t.

• Uses of differentiation:

– Rates of change as applied to motion, so determining the velocity and acceler-
ation of an object.

– Maxima and minima of a function.

– Modelling real-life systems using differential equations. Often scientists and
engineers know about how things change, such as infectious diseases, popu-
lation growth, chemical processes or mechanical processes, and these can be
represented using equations involving derivatives.
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1.2.1 Differentiation from first principles

• How is the derivative of a function determined? Consider a general curve y = f(x).

– The gradient of a curve is defined as the gradient of a tangent to the curve at
that point.

– Tangent: astraight linethat justtouchesthecurveatthepointweare interested
in.

– This is calculated from rise/run of the chord between the points (x, f(x)) and
(x+h, f(x+h))onacurve inthe limitash→ 0(so that thechordapproximates
the tangent at (x, f(x))).

• Summary

Given a function f(x), the the derivative is the instantaneous rate of change of
f with respect to x. This is also the gradient of the graph y = f(x), and so (by the
above) it can be defined as:

f ′(x) =
df

dx
= lim

h→0

f(x+ h)− f(x)

h

13



• Example (dependent on time - this is not required)

The displacement s of an object in t is given by s(t) = t2.

Find the velocity using differentiation by first principles:

ds

dt
= lim

h→0

s(t+ h)− s(t)
h

= lim
h→0

(t+ h)2 − t2

h

= lim
h→0

t2 + h2 + 2th− t2

h

= lim
h→0

h2 + 2th

h

= lim
h→0

h(h+ 2t)

h

= lim
h→0

h+ 2t

= 2t

(So the rate of change of a quadratic function is described by a linear function.)
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1.2.2 Elementary differentiation using standard rules

• Wewill employ rules (contained in themoduleFormulaSheet) thathavebeenproven
using differentiation from first principles.

For constants a and n:

y = axn =⇒ dy

dx
= anxn−1

y = ax =⇒ dy

dx
= a

y = a =⇒ dy

dx
= 0

y = ex =⇒ dy

dx
= ex

y = sin(x) =⇒ dy

dx
= cos(x)

y = cos(x) =⇒ dy

dx
= − sin(x)

y = ln(x) =⇒ dy

dx
=

1

x

To differentiate simple standard functions, we can try to match them to these for-
mats and apply the rule.

• Examples

Differentiate:

y = 5x2, y = −3x10, y = − 4

x3

y = 9x, y = 2
√
x, y = 100x0.5

• Youmayneed to revise the lawsofpowers, covered inFoundationMaths1, inorder to
re-arrange some of these into a format compatible with the rules for differentiation.
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2 Week 2

16



2.1 Lecture 3: Linearity and the gradient of a curve at a point

• Summary of what we know so far, and the notation for differentiation:

If y is a variable whose value is dependent on x, then we say that y is a function
of x and may also write it as y(x).

Here it makes sense to ask how much y will change if x changes by a small amount,
which is the derivative of y with respect to x, or the rate of change of y as x changes.

This is written as either
dy

dx
, or as y′(x) for short.

However, if function g depends on a different variable, such as g(t) = 3t2 + 1 then

the notation
dy

dx
does not make sense, and it would be appropriate to use

dg

dt
instead.

• Linearity
Using our standard rules, we can easily differentiate standard expressions that are
added together or subtracted, or are multiplied by a constant value.

y = f(x)± g(x) =⇒ dy

dx
= y′ =

df

dx
± dg

dx
= f ′(x)± g′(x)

If a is a constant, then:

y = af(x) =⇒ dy

dx
= a

df

dx
= af ′(x)

Thus, if y = axk, where a, k are constants, then:

dy

dx
= kaxk−1

• Examples

Differentiate the following w.r.t. x:

y = 10
√
t, y = 4x3 + 5x+

2

x3

y = (5x+ 2)(2x− 1), y = − 1√
2x
− x3/2

17



2.1.1 Gradient of a curve at a point

• Differentiating the formula for a curve results in a formula for the gradient of that
curve at any point. In any case that is not a straight line, this gradient is dependent
on x. Therefore, to find the gradient of a curve at a particular point, differentiate
first and then substitute in the particular value of x to the formula obtained for dy

dx
.

Example notation: given a function y(x), the gradient of y at the point x = 2
may be indicated by y′(2) or dy

dx

∣∣
x=2

• Examples

1. Find the gradient of the curve y = x2 + 4x− 7 at the point (2, 5).

2. Find the gradient of the curve y = 2x− 9
(3x)3/2

at the point (3, 17/3).

Solution:

First, we need to use the rules of indices to write the second term in a suit-
able form:

y = 2x− 9

33/2x3/2

= 2x− 9

33/2
x−3/2

= 2x− 32

33/2
x−3/2

= 2x− 32− 3
2x−3/2

= 2x− 3
4
2
− 3

2x−3/2

= 2x− 31/2x−3/2

Now all terms are in a suitable form, and differentiating with respect to x:

18



dy

dx
=

d

dx

(
2x
)
− d

dx

(
31/2x−3/2

)
= 2− 31/2

(
− 3

2

)
x−

3
2
−1

= 2 +
1

2
· 31/2 · 3x−

3
2
− 1

2

= 2 +
1

2
· 3

1
2
+1x−5/2

= 2 +
1

2
· 33/2x−5/2

Finally, we evaluate this formula at x = 3 as required:

dy

dx

∣∣∣∣
x=3

= 2 +
1

2
· 33/2(3)−5/2

= 2 +
1

2
· 3

3
2
− 5

2

= 2 +
1

2
· 3−2/2

= 2 +
1

2
· 3−1

= 2 +
1

2
· 1

3

= 2 +
1

6

= 2
1

6
or

13

6

• Using rules of indices, we may need to re-write expressions before they can be differ-
entiated. Generalising the previous example:

If a and k are constants, then the following may be useful:

1

(ax)k
=

1

akxk
=

1

ak
x−k

19



2.1.2 Extra Questions

• What are the co-ordinates of the points where this cubic has a gradient of 5?

y =
2

3
x3 − 7

2
x2 + x− 14

Solution:(
4,−23

1

3

)
and

(
− 1

2
,−371

24

)
or
(
− 0.5,−15.48333 . . .

)

• What is the gradient of this quadratic equation at the points where y = 3?

y = −3x2 + 11x− 5

Can you see how these gradients make sense given the shape of the parabola?

Solution:

dy

dx
= 5 at x = 1, and

dy

dx
= −5 at x = 2

2

3
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2.2 Lecture 4: The Product and Quotient Rules

• Suppose f(x) is the product of two functions (i.e. the result of multiplying them
together):

f(x) = u(x) · v(x)

Then the derivative is given by the Product Rule, which can be written as:

df(x)

dx
= v(x) · du(x)

dx
+ u(x) · dv(x)

dx

(uv)′ = vu′ + uv′

d

dx
(uv) = vu′ + uv′

d

dx
(uv) = u

dv

dx
+ v

du

dx

• Examples

1. Differentiate y = x2 sin(x).

2. Find dy
dx

when y = ex cos(x).

3. Differentiate y = (x2 + 2) ln(x).

• Suppose insteadthatour function isgivenbyone functiondividedbyanother (“Quo-
tient” is another word for a fraction):

y = f(x) =
u(x)

v(x)

Then the derivative is given by the Quotient Rule, which can be written as:

f ′(x) =
df

dx
=
v du
dx
− udv

dx

v2

or

f ′(x) =
vu′ − uv′

v2

• Examples

1. Find d
dx

(
sin(x)
x3

)
.

2. If f(x) = tan(x), then find df
dx

using the Quotient Rule.
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• Examples

Ask the students which rule to use to differentiate:

y = x2 sin(x)

y = ln(x) tan(x)

y = x7 ex

y =
4x9 + 2

tan(x)

y =
ln(x)

2x2 + x+ 1

Consistency of the rules

• To see how the product rule and the quotient rule are consistent, differentiate:

h(t) =
3 et

t2

Show that we can calculate the answer using either

(a) the quotient rule

(b) the product rule by first writing it as h(t) = 3 et t−2.

Will then need to break up the quotient rule solution into two terms to show that
the answers are the same.

• To see how the product rule is consistent with the regular methods of differentiation:

y = (x2 − 7)x4

Show

(a) How to calculate it using the product rule

(b) how to determine the answer by first multiplying out the brackets.

Show that both methods are consistent and give rise to the same answer.
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3 Week 3
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3.1 Lecture 5: Chain rule

• Recap

Revise the Product Rule and the Quotient Rule with one example of each:

h(x) =

(
1

x
− x+ 2

)
ln(x)

y =
cos(x)√

x

• A composite function is defined as a “function of a function”. For example, h(x) is
a composite function when:

h(x) = g(f(x))

where f and g are functions. In this case, to calculate the output of h, x is the input
to function f and the output is then taken as the input for function g.

• Examples of composite functions

sin(3x+ 1), ex
2+2, (2x− 5)4, cos(sin(x))

• To differentiate composite functions, we use the Chain Rule.

If y = g(f(x)), then we write u = f(x) and so y = g(u).

Then,

dy

dx
=

dy

du
· du

dx

Give your final answer in terms of the original variables - in this case, x and not u.

• Examples using the Chain Rule:

1. If y = sin(3t2 + 5), find y′

2. Differentiate

y = tan(4t)

3. Find dy
dx

when:

y = e3x
2+3x−1
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• Examples

1. Find dy
dx

when y = e3x
2+3x−1

2. Differentiate y = sin(2x)

3. Find dy
dx

when y = (x5 + 2x+ 4)5

4. Find y′ when y = cos(4x)

5. Differentiate y = sin

(
5t+ 1

2

)
6. Determine dy

dx
when y = ln

(√
x
)

• FromExamples2and4(andExample2 in theprevious lecture), thepattern suggests
an additional set of rules that we can use as shortcuts:
If a is a constant,

y = sin(ax) =⇒ dy

dx
= a cos(ax)

y = cos(ax) =⇒ dy

dx
= −a sin(ax)

y = tan(ax) =⇒ dy

dx
= a sec2(ax)

y = eax =⇒ dy

dx
= a eax
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3.2 Lecture 6: Higher-order derivatives and applications

3.2.1 Second-order Derivatives

• Differentiating a function y = f(x) with respect to x gives us the “first derivative”
of y, denoted by y′, f ′(x), or dy

dx
. This tells us about the gradient or rate of change of y.

Differentiating the result (with respect to x) yields the “second derivative” of y,
denoted by:

d2y

dx2
or y′′ or f ′′(x)

This tells us the rate at which the gradient of y changes.

• We can keep on differentiating many times. The nth derivative is denoted by:

dny

dxn
or y(n) or f (n)(x)

• Examples

(1) f(x) = 5x3 =⇒ f ′(x) = 15x2 =⇒ f ′′(x) = 30x

(2) f(x) = 6 ex =⇒ f ′(x) = 6 ex =⇒ f ′′(x) = 6 ex

• If the independent variable is specifically time (usually denoted as t), then we may
also use the notation ẏ(t) and ÿ(t) for the first and second time-derivatives. This is
applicable to the next topic!
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3.2.2 Physical applications of differentiation as “rate of change”:

• Suppose an object moves in a straight line with its position along the line x(t).

– Velocity is the rate of change of position, so:

v(t) =
dx

dt

– Acceleration is the rate of change of velocity, so:

a(t) =
dv

dt

Therefore we also note that

a(t) =
d

dt

(
dx

dt

)
=

d2x

dt2

• Example

A car moves in a straight line from A to B. At any time t (in seconds), the dis-
placement of the car from A is given by:

x(t) = t3 + 2t2 metres

1. What is the velocity of the car at t = 3s?

2. What is the acceleration of the car after 4s?

Solution:

1.

v(t) =
dx

dt
=

d

dt
(t3 + 2t2) = 3t2 + 4t

∴ v(t = 3) = 3(3)2 + 4(3) = 27 + 12 = 39 ms−1

2.

a(t) =
d2x

dt2
=

d

dt
(3t2 + 4t) = 6t+ 4

∴ a(t = 4) = 6(4) + 4 = 28 ms−2
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3.2.3 Combining the rules of differentiation

• We may encounter functions that are more complicated combinations of other func-
tions - perhaps a function of a function that is then multiplied by another function -
or a function of a function of a function.

• Complicated problems may require multiple uses of any combination of the rules.
Break them down “from the outside/superstructure to the inside”. Careful layout
and presentation of solutions is key to avoid getting lost!

• Example 1:

Differentiate

y = sin(5x)
√

cos(x)

The “outermost” structure here is sin(5x) multiplied by
√

cos(x), so this requires
first an application of the product rule.

Let,

u = sin(5x) and v =
√

cos(x)

Then to differentiate each of these inner component parts requires the chain rule:

Letw = 5x, then u = sin(w), and so:

du

dx
=

du

dw
· dw

dx
= cos(w) · 5 = 5 cos(5x)

Let z = cos(x), then v =
√
z = z1/2, and so:

dv

dx
=

dv

dz
· dz

dx
=

1

2
z−1/2 · (− sin(x)) = − sin(x)

2
√

cos(x)

Finally we combine these terms in the “big picture” product rule again:

dy

dx
= u · dv

dx
+ v · du

dx

= sin(5x) ·
(
− sin(x)

2
√

cos(x)

)
+
√

cos(x) · 5 cos(5x)

= 5 cos(5x)
√

cos(x)− sin(x) sin(5x)

2
√

cos(x)
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• Now for two examples of problems that involve “function of a function of a function”.

• Example 2:

y = ln
(

sin(2x)
)

This can be solved by using the chain rule twice.

If y = f(g(h(x))), let the innermost function be u = h(x), and the middle func-
tion v = g(u), so that y = f(v).

Then the Chain Rule states:

dy

dx
=

dy

dv
· dv

du
· du

dx

So for this example,

Let u = 2x, and v = sin(u). Then y = ln(v)

Then

dy

dv
=

1

v
,

dv

du
= cos(u),

du

dx
= 2

and so

dy

dx
=

dy

dv
· dv

du
· du

dx
=

2 cos(u)

v
=

2 cos(2x)

sin(2x)
=

2

tan(2x)

• Example 3:

y = cos
(

e4x
)

Again this is a function (cosine), of a function (exponential), of a function (multiply
by 4).

Let u = 4x, and v = eu . Then y = cos(v)

Then

dy

dv
= − sin(v),

dv

du
= eu,

du

dx
= 4

and so

dy

dx
=

dy

dv
· dv

du
· du

dx
= −4 eu sin(v) = −4 e4x sin(e4x)
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3.2.4 Extra Questions

1. Given that

g(t) = ln(t2 + 4)(3t2 − 7)

What is dg
dt

?

Solution:

g′(t) = 6t ln(t2 + 4) +
2t(3t2 − 7)

t2 + 4

2. Determine the second derivative with respect to x of:

f(x) = ex
2

Solution:

∴ f ′(x) = 2x ex
2

∴ f ′′(x) = 2 ex
2

+4x2 ex
2

= 2 ex
2 (

1 + 2x
)

3. Determine the second derivative with respect to x of:

y = (x+ 1) sin(4x− 1)

What is the value of d2y
dx2

when x = 1
4
?

Solution:

∴ y′(x) = sin(4x− 1) + 4(x+ 1) cos(4x− 1)

∴ y′′(x) = 8 cos(4x− 1)− 16(x+ 1) sin(4x− 1)

∴ y′′
(

1

4

)
= 8 cos(0)− 20 sin(0) = 8
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4 Week 4
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4.1 Lecture 7: Stationary Points and Extrema

We often want to maximise or minimise a function within a given range of x.

Suppose we want to maximise (or minimise) a function f in the range a < x < b. There
are three ways a maximum can occur:

(a) The extreme value occurs at a point in (a, b) where:

dy

dx
= 0

(b) The extreme value occurs at an endpoint.

(c) The extreme value occurs at a point in (a, b) but the gradient dy
dx

is undefined as the
function is not “smooth”.

Similar possibilities exist for where minimum values occur. Of these, (a) is the case we are
mainly interested in, but we need to be aware of the other possible situations that extreme
values appear.
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4.1.1 Stationary Points

If f ′(x) = 0 when x = a for some value a, then
(
a, f(a)

)
is called a stationary point or

turning point of the function f . There are three main types:

(a) Local maximum. e.g. the point (0, 0) of y = −x2.

(b) Local minimum. e.g. the point (0, 0) of y = x2.

(c) Point of inflection. e.g. the point (0, 0) of y = x3.

We use the terms “local” max/min, to distinguish from the global max/min which is the
overall extreme value for the given range.

33



Example of local and global extrema:
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4.1.2 Locating stationary points, and classifying them using the second

derivative test

Therefore, to find the maximum and minimum points of a curve y = f(x), we follow the
following procedure:

(1) Determine the first derivative dy
dx

.

(2) Solve the equation dy
dx

= 0 for x. This tells us the location of the points where the
gradient is zero - that is, the stationary points.

(3) Calculate the second derivative d2y
dx2

.

(4) Determine the sign of d2y
dx2

at each stationary point, and apply the following test:

Second Derivative Test:

d2y

dx2

∣∣∣∣
x=a

> 0 =⇒ local minimum

d2y

dx2

∣∣∣∣
x=a

< 0 =⇒ local maximum

d2y

dx2

∣∣∣∣
x=a

= 0 =⇒ no conclusion - use the first derivative test instead.

This test comes from considering the rate of change of the gradient around a maximum or
minimum stationary point:
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e.g. Around a local maximum, the gradient smoothly changes from positive to zero to
negative. Thus it is decreasing around the stationary point, and so has a negative rate of
change. Thus the second derivative of the function is negative at the stationary point.

(5) If we are only concerned with the behaviour in a limited interval a < x < b of x,
we should also evaluate the function at the endpoints, determining f(a) and f(b) to check
if they are actually the global extrema in the range supplied.

4.1.3 Example I

Find and classify the stationary points of

y = x2 − 4x+ 5

Solution:

Observe that this is a quadratic function with a positive coefficient of x2, so we would
expect the graph to be a∪-shaped parabola, and thus there should be a local minimum at
the only stationary point!

Differentiating:

dy

dx
= 2x− 4
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Set this first derivative equal to zero and solve for x:

2x− 4 = 0

∴ 2x = 4

∴ x = 4/2 = 2

So there is a stationary point when x = 2. At this point, evaluating the original formula
gives us the y-coordinate:

y(x = 2) = (2)2 − 4(2) + 5 = 4− 8 + 5 = 1

So the stationary point is located at (2, 1). Is this a maximum or a minimum?

Determining the second derivative:

d2y

dx2
=

d

dx
(2x− 4) = 2

In this case, it is a constant, so at the stationary point when x = 2 we still have:

d2y

dx2

∣∣∣∣
x=2

= 2 > 0

Hence there is a local minimum at (2, 1).

This, of course, makes sense given the expected shape of the parabola:
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4.1.4 Example II

Find and classify the stationary points of:

y = x3 + x2

Solution:

The first derivative is:

y′ = 3x2 + 2x

Setting this equal to zero and solving the resulting quadratic equation for x to locate the
stationary points:

y′ = 0

3x2 + 2x = 0

x(3x+ 2) = 0

∴ x = 0 or 3x+ 2 = 0

∴ x = 0 or x = −2

3

Then determining the y-coordinate in each case:

y(x = 0) = 03 + 02 = 0

and

y

(
x = −2

3

)
=

(
− 2

3

)3

+

(
− 2

3

)2

= − 8

27
+

4

9

=
12− 8

27

=
4

27

So the stationary points are (0, 0) and
(
− 2

3
, 4
27

)
.
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Then we differentiate again to obtain the second derivative:

y′′ = 6x+ 2

and evaluating this at the stationary points to apply the second derivative test in each case:

y′′(x = 0) = 6(0) + 2 = 2 > 0

So (0, 0) is a local minimum.

y′′
(
x = −2

3

)
= 6

(
− 2

3

)
+ 2 = −4 + 2 = −2 < 0

So
(
− 2

3
, 4
27

)
is a local maximum.
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4.2 Lecture 8: First derivative test

If the Second Derivative Test is unsuccessful, we can use the First Derivative Test:

If x = a is a stationary point, calculate the sign of dy
dx

at very close values of x on ei-
ther side of a, called a− and a+. Then there are three possible scenarios:

a− a a+

dy
dx

> 0 0 < 0 Local

maximum:

a− a a+

dy
dx

< 0 0 > 0 Local

minimum:

a− a a+

dy
dx

< 0 0 < 0

dy
dx

> 0 0 > 0

Point of

inflection:
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4.2.1 Example

Find and classify the stationary points of

f(x) = x4 + 2x3

Solution:

The first derivative is:

f ′(x) = 4x3 + 6x2

Setting this equal to zero and solving for x to locate the stationary points:

f ′(x) = 0

4x3 + 6x2 = 0

2x3 + 3x2 = 0

x2(2x+ 3) = 0

∴ x2 = 0 or 2x+ 3 = 0

∴ x = 0 or x = −3

2

Then determining the y-coordinate in each case:

f(x = 0) = 04 + 2(0)3 = 0

and

f

(
x = −3

2

)
=

(
− 3

2

)4

+ 2

(
− 3

2

)3

=
81

16
− 27

4

= −27

16

So the stationary points are (0, 0) and
(
− 3

2
,−27

16

)
.
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Then we differentiate again to obtain the second derivative:

f ′′(x) = 12x2 + 12x

and evaluating this at the stationary points to apply the second derivative test in each case:

f ′′(x = 0) = 12(0)2 + 12(0) = 0

So the second derivative test fails in this case.

f ′′
(
x = −3

2

)
= 12

(
− 3

2

)2

+ 12

(
− 3

2

)

=
12× 9

4
− 36

2

= 27− 18

= 9 > 0

So
(
− 3

2
,−27

16

)
is a local minimum.

Now, we can apply the first derivative test to classify (0, 0) by evaluating f ′(x) around
x = 0:

• Try x = −0.0001:

f ′(x = −0.0001) = 4(−0.0001)3 + 6(−0.0001)2

= 5.9996× 10−8 > 0

• Try x = +0.0001:

f ′(x = −0.0001) = 4(0.0001)3 + 6(0.0001)2

= 6.0004× 10−8 > 0

Hence we have a positive point of inflection at (0, 0).
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4.2.2 Summary

• Given a function y = f(x), the local maximum or minimum value of y occurs at
stationary points, where:

dy

dx
= 0

• Given that x = a is a stationary point of y = f(x), we can determine whether there
is a maximum or minimum located at

(
a, f(a)

)
using the Second Derivative Test:

d2y

dx2

∣∣∣∣
x=a


> 0 =⇒ Local Minimum.
< 0 =⇒ Local Maximum.
= 0 =⇒ Use the First Derivative Test.
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44



5.1 Lecture 9: Optimisation Problems

5.1.1 Introduction

• Aim

Learn how to use interpret written physical problems, and use differentiation tech-
niques to obtain solutions that maximise or minimise a quantity.

• Revise the principles of using differentiation to find and classify stationary points:

Do this as a multiple-choice oral quiz.

– Given a function y = f(x), the local maximum or minimum value of y occurs
at stationary points, where:

dy

dx
= 0

– Given that x = a is a stationary point of y = f(x), we can determine whether
it is a maximum or minimum using the Second Derivative Test:

d2y

dx2

∣∣∣∣
x=a


> 0 =⇒ Local Minimum.
< 0 =⇒ Local Maximum.
= 0 =⇒ Use the First Derivative Test.

5.1.2 Motivation

Next, we shall learn how to use interpret written physical problems, and use the techniques
of differential calculus to obtain solutions that maximise or minimise a quantity.

• We have learned that differentiation can be used to find maximum or minimum
values of functions.

• Motivation: maximising profits in a company, or the surface area of a solar panel, or
minimising the amount of material used in production of an item.

• We will be looking for the largest or smallest value of a function subject to some kind
of constraint.

• The constraint will be some condition (usually described by an equation) that must
absolutely be true no matter what our solution is.

• For example, we might need to minimise the material used in making an oil drum,
but it must have a particular capacity no matter what dimensions we choose.
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5.1.3 General principles

• Begin by reading the question, twice!

• We need to clearly understand what are (a) the quantity to be optimised, and (b)
the constraint that must be satisfied.

• It often helps to draw a diagram of the situation.

• Assign some variable names to the unknowns, and turn our constraint and the
optimised quantity into equations.

• We will want to use the constraint to obtain a formula in one variable for the quantity
to be optimised.

• Then we can find the choice for which it is maximised or minimised by differentiating
this formula and setting the derivative equal to zero.

• Finally, use thefirstor secondderivative test toconfirmthat theanswer is specifically
a maximum or minimum as desired.
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5.1.4 Example 1

Find two positive numbers whose sum is 300 and whose product is a maximum.

1. Label our unknowns: the two numbers are x and y.

2. The constraint: the sum must be 300, so x+ y = 300.

3. The quantity to be optimised is the product: P = xy

4. Use the constraint to obtain the product in one variable:

y = 300− x =⇒ P = x(300− x) = 300x− x2

5. Differentiate the formula for the product:

dP

dx
= 300− 2x

6. Find the value of x that gives an extreme value by setting dP
dx

= 0:

300− 2x = 0 =⇒ 2x = 300 =⇒ x = 150

7. Find the other number using the constraint:

y = 300− x = 300− 150 = 150

8. Confirmthat this choice (x = 150, y = 150)maximises theproductusing theSecond
Derivative Test:

d2P

dx2
= −2 =⇒ d2P

dx2

∣∣∣∣
x=150

= −2 < 0 ∴ Local Maximum.
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5.1.5 Example 2

A farmer wants to erect a rectangular pen in his field. He has 40m of wire fencing. What
dimensions should he use to make the pen as large as possible?

1. Ask yourself: What is the quantity to be optimised? What is the constraint?

The optimisation is that we need to maximise the area of the pen. The constraint is
that the perimeter must equal the fencing length of 40m.

2. Draw a rectangle to visualise the problem.

3. Name the unknowns: the length x and breadth y of the pen.

4. Ask yourself: Using these symbols, how can the constraint and the optimised quan-
tity be expressed as equations?

5. Use the information provided to create a formula for the constraint: the perimeter
P = 40 of the pen.

P = x+ y + x+ y = 2x+ 2y = 40 =⇒ x+ y = 20

6. Write a formula for what we are trying to optimise: the areaA of the pen.

A = xy

7. Use the constraint equation to eliminate a variable from the area formula:

y = 20− x =⇒ A = x
(
20− x

)
= 20x− x2

8. Now that the area is stated in terms of one variable, differentiate:

dA

dx
= 20− 2x
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9. Set the gradient equal to zero and solve to find the value ofx that maximises the area
A:

dA

dx
= 0 =⇒ 20− 2x = 0 =⇒ 2x = 20 =⇒ x = 10m

10. Use the constraint to determine the other variable, so that the full dimensions are
known:

y = 20− x = 20− 10 = 10m

11. Confirm that this choice (x = 10m, y = 10m) maximises the product using the
Second Derivative Test:

d2A

dx2
= −2 =⇒ d2A

dx2

∣∣∣∣
x=10

= −2 < 0

Hence this is a local maximum area.

12. What is the largest pen he can make? Substitute both values back into the formula
for area to determine what this maximum area actually is:

x = 10, y = 10 =⇒ A = xy = 10× 10 = 100m2
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5.1.6 Example 3

An oil drum is to be manufactured with a cylindrical shape and a capacity of 1000cm3 of oil.
The drum is made of gold, so it would be best to use as little as possible. What dimensions
will minimise the amount of metal used to construct the drum? You may assume that the
thickness of the drum is negligible.

1. Ask yourself: What is the quantity to be optimised? What is the constraint?

The “optimisation” is that we want to minimise surface area, as this will be roughly
equivalent to the material used given the negligible thickness. The constraint is that
we must have a capacity (i.e. a volume) equal to 1000cm3

2. Draw a diagram, and label the dimensions: r is the radius, h is the height, V the
volume and S the surface area of the drum.

3. Ask yourself: Using these symbols, how can the constraint and the optimised quan-
tity be expressed as equations?

4. Constraint: Volume of a cylinder is given by πr2h and equal to 1000. Rearranging
this gives a formula for h in terms of r:

πr2h = 1000 =⇒ h =
1000

πr2

5. Quantity to optimise: Surface area S given by the sum of the areas of the circular
lid, circular base and cylindrical sides:

S = πr2 + πr2 + 2πrh = 2πr2 + 2πrh

6. Then substitute in the volume restriction to eliminate h:

S = 2πr2 + 2000r−1
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7. Differentiate this function:

dS

dr
= 4πr − 2000r−2

8. Set dS
dr

= 0 and solve for r to determine the stationary point of the surface area
function:

4πr − 2000r−2 = 0 =⇒ 4πr3 − 2000 = 0

Hence:

∴ r3 =
2000

4π
=⇒ r =

3

√
2000

4π
= 5.419cm

9. Use the value of r to calculate h and thus obtain the full dimensions of the drum:

h =
1000

π(5.419)2
= 10.84cm

10. Use the Second Derivative Test to confirm that this is a minimum:

d2S

dr2
= 4π+ 4000r−3 =⇒ d2S

dr2

∣∣∣∣
r=5.419

= 4π+ 4000(5.419)−3 = 37.70 > 0

Hence this is a local minimum surface area of:

A = 2π(5.419)2 +
2000

5.419

= 553.58 ≈ 554cm2
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5.1.7 Extra Questions

• Show that a rectangle with a fixed area and minimum perimeter is a square.

• Show that a rectangle with a fixed perimeter and a maximum area is a square.

• Repeat Example 2, but the farmer is able to use a river as one of the four sides of the
pen. How much larger can the pen be in this case, with the same length of fencing?
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5.2 Lecture 10: Introduction to Integration

• Integration is the inverse process to differentiation: given a formula for the gradient
dy
dx

, can you find the equation of the curve y = f(x)?

It is also equivalent to obtaining an
equation for the area enclosed between
the curve and the x-axis.

• Example

Suppose dy
dx

= 2x.

To integrate this, we need to find the function that differentiates to give 2x.

This could be y = x2, but because a con-
stant term has derivative zero, there are
infinitely many other solutions such as
y = x2 + 1,
y = x2 + 45,
y = x2 − 2000,
etc.

We represent all of these by including the constant of integration y = x2 + c. This
is called “indefinite integration”.

• Notation (for indefinite integrals):∫
f(x) dx

Integral sign Integrand w.r.t. x

• Hence, writing the above result using proper notation:∫
2x dx = x2 + c
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• This is an example of a simple integral that can be obtained by reversing our differ-
entiation rules. For a more general polynomial function axn, to differentiate it we
“multiply by the power, then reduce the power by one”. Doing the opposite of each
step, and in reverse order, we would “increase the power by one, and divide by the
new power”:

dy

dx
= 3x2 =⇒ y = x3 + c

dy

dx
= x3 =⇒ y =

1

4
x4 + c

• Generalising this to a rule:∫
axn dx =

a

n+ 1
xn+1 + c (n 6= −1)

• Examples

Evaluate∫
4x7 dx

∫
t100 dt

Integrate the following with respect to x:

dy

dx
= 3x,

dy

dx
=
√
x,

dy

dx
=

1

x3

• Linearity Rules for integration:∫
af(x) dx = a

∫
f(x) dx (Multiplicative Law)

∫
f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx (Additive Law)
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• Examples

Using these rules (checking the answers by differentiation):

1. Evaluate:∫
3x2 + 8 dx

2. Find y, if:

dy

dx
= 6x2 + 4x+ 5

• Note that the integral of a constant is simply given by:∫
a dx = ax+ c

For example:∫
4.79 dx = 4.79x+ c,

∫
π dx = πx+ c

• Rules for integration of some standard functions:

(Note that these are the reversal of the standard derivatives. They are in the formula
booklet. Try not to confuse integration and differentiation.) For any constant a:

∫
a cos(x) dx = a sin(x) + c∫
a sin(x) dx = −a cos(x) + c∫
a sec2(x) dx = a tan(x) + c∫
a ex dx = a ex +c∫
a

x
dx = a ln |x|+ c
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• Examples

1. Evaluate:∫
−1

2
cos(t) dt

Solution:∫
−1

2
cos(t) dt =

−1

2
sin(t) + c

2. Evaluate:∫
6 ex−3x5 +

19

x
− 1√

x
dx

Solution:

Before evaluating any integrals, re-write the final term using laws of indices:

∫
6 ex−3x5 +

19

x
− 1√

x
dx =

∫
6 ex−3x5 +

19

x
− x−1/2 dx

= 6 ex−3

6
x6 + 19 ln |x| − x−

1
2
+1

−1
2

+ 1
+ c

= 6 ex−1

2
x6 + 19 ln |x| − x

1
2

1
2

+ c

= 6 ex−1

2
x6 + 19 ln |x| − 2

√
x+ c

where the final fraction must be simplified, using:

1
1
2

= 1÷ 1

2
=

1

1
÷ 1

2
=

1

1
× 2

1
=

2

1
= 2

We should never have nested fractions in our final solutions as they can always
be simplified in this fashion.

56



3. A curve passes through the point (1, 7) and the gradient of the curve at the
point (x, y) is given by 2x2(2x+ 1). Find the equation of the curve.

Solution:

Begin by integrating the gradient:

y =

∫
2x2(2x+ 1) dx

=

∫
4x3 + 2x2 dx

=
4x4

4
+

2x3

3
+ c

= x4 +
2

3
x3 + c

Substituting in the co-ordinates y = 7 when x = 1, determine the value of c:

7 = (1)4 +
2

3
(1)3 + c

∴ 7 = 1 +
2

3
+ c

∴ 7 =
5

3
+ c

∴ c =
21

3
− 5

3
=

16

3

Hence the fully-defined equation of the curve is:

y = x4 +
2

3
x3 +

16

3
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6.1 Lecture 11: Integration by Substitution

• Opening problem:

(a) Find a formula for y if:
dy

dx
= 6x5 +

3

x
−
√
x

(b) Evaluate

∫
4 cos(x)− 2

3
x−4 dx

Go through this and revise the basics of integration.

• Now, how might we evaluate:∫
−2 sin(2t) dt

We notice that the integrand in this case looks like the result of a derivative using
the chain rule.

• Integration by substitution is the reverse of the chain rule for differentiation. We
can use it to integrate more complicated “functions of functions”.

• General method

1. Generally, letube the inner part of the most complicated term in the integrand.

2. Obtain du
dx

by differentiating this formula foru(x), then rearrange this to obtain
dx in terms of du.

3. Substitute everything in - replacing both u and dx.

4. We should now have the problem stated entirely in terms of u, and it should
hopefully be a soluble integral. Execute it!

5. Substitute u(x) back in, so that we obtain the final answer in terms of the orig-
inal variable x.

6. Check our answer by differentiation. Can we recover the original integrand?
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• Examples

(a) Evaluate:∫
(x+ 4)5 dx

Solution:

Let u = x+ 4

Then,

du

dx
= 1 =⇒ dx = du

Substituting both parts in:∫
(x+ 4)5 dx =

∫
u5 du

=
1

6
u6 + c

=
1

6
(x+ 4)6 + c

(b) aaa

∫
x2(2x3 + 3)5 dx =

1

36
(2x3 + 3)6 + c

(c) aaa

∫
(2x− 4)3 dx =

1

8
(2x− 4)4 + c

(d) aaa

∫
(6x2 + 4x) sin

(
x3 + x2

)
dx = −2 cos

(
x3 + x2

)
+ c

(e) aaa

∫
x
√

3x2 − 2 dx =
1

9

(
3x2 − 2

) 3
2 + c

(f) aaa

∫
2x ex

2− 1
2 dx = ex

2− 1
2 +c
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• Note that (similar to the analogous cases in differentiation) we can use this process
when the inner function is linear to effectively derive some more generalised rules of
integration:

Given that both a and n are constant:

∫
a sin(nx) dx =

−a
n

cos(nx) + c∫
a cos(nx) dx =

a

n
sin(nx) + c∫

a enx dx =
a

n
enx +c
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6.2 Lecture 12: Definite Integration

• We have been working with indefinite integrals, which feature an arbitrary constant
cwhich is unknown without further information:∫

f(x) dx = F (x) + c

• The definite integral:∫ b

a

f(x) dx

has the known limits of integration x = a and x = b. In this case,∫ b

a

f(x) dx =

[
F (x)

]b
a

= F (b)− F (a)

There is no arbitrary constant c when the limits are known. Instead of adding +c
after the integration is carried out, we substitute in the upper and lower limits b and
a, and find the difference.
We could imagine that there exists +c for both the upper and lower limits but they
cancel each other.

In physical terms, this definite integral is the area under the curvef(x) in the interval
a < x < b. It is a numerical value, rather than a function.

• Standard examples

(1)

∫ 4

1

2x− 4 dx = 3

(2)

∫ 1

0

√
x+ 3x− 2 dx =

1

6

(3)

∫ 5

1

9

t
− 2t+ t2 dt = 31.81 . . .

(4)

∫ 2

0

3x− x2 dx =
10

3

(5)

∫ π

−π
4 sin(x) + 2 cos(x) dx = 0

(6)

∫ 3

2

1

t2
− sin(t) + 0.5 dt = 0.0928
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• Substitution

If we are calculating a definite integral using substitution, then when the new vari-
able u is declared and dx replaced with du, we also need to replace the limits x = a
and x = b with the corresponding limits in terms of u = u(a) and u = u(b) in order
to fully convert the integral to the substituted variable.

As the result will be a numerical value, it will no longer be necessary to substi-
tute the original variable back into the final solution.

• Examples of definite integration by substitution:

(1) I =

∫ 1

0

3
√
x
(
4x3/2 + 1

)2
dx =

62

3

(2) Find the integral of (2x− 4)3 between x = 2 and x = 3. (Answer = 2)

(3) I =

∫ 1

−1

(
6x2 + 4

)
sin
(
x3 + 2x

)
dx = 0

6.2.1 Extra Questions

(1)

∫ 1

−3
6x2 − 5x+ 2 dx = 84

(2)

∫ π

−π
sin(x) dx = 0

(3)

∫ 1

0

−12 et dt = −12 e +12 = −20.6 . . .
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7 Week 7

64



7.1 Lecture 13: Area under a Curve

• Opening problem:

(a) Calculate y =

∫
−2x(4− x2)7 dx =

1

8
(4− x2)8 + c

(b) Calculate y =

∫ 5

1

3t2 − 5

t
dt = 124− 5 ln(5) = 115.95 . . .

• Consideracurvey = f(x)which isabove thex-axis in the regiona < x < b. Suppose
A is the area bounded by the curve y = f(x), the x-axis and the vertical lines x = a
and x = b:

ThenA is called the area under the curve between x = a and x = b.

The definite integral of the function in a region where the curve is above the x-axis
yields a positive value, which is exactly this area. Hence:

A =

∫ b

a

f(x) dx
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• However, integrating the function of a curve over a range of x where it is below the
x-axis gives a negative value, which is precisely−1× the area between the curve and
the x-axis.

Thus, we have:

−B =

∫ d

c

g(x) dx

• So what if we wish to calculate the area enclosed by a curve that is both above and
below the x-axis in different regions?

In this case, when asked to calculate the total area we must determine this positive
value by separately calculating the integrals for regions where the curve is above and
below the x-axis, and then summing their magnitudes/absolute values.

Therefore, we must begin by solving an equation to find where the curve crosses
the x-axis.
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• Examples

(1) Find the area between the curve y = −x2 + x+ 6 and the x-axis.

Solution

1. Either by using the quadratic equation, or factorising to:

y = −(x2 − x+ 6) = −(x− 3)(x+ 2)

locate the roots at x = −2 and x = 3.

2. Draw a graph.

3. Formulate the definite integral:

A =

∫ 3

−2
y(x) dx

=

∫ 3

−2
−x2 + x+ 6 dx

=

[
− x3

3
+
x2

2
+ 6x

]3
−2

=

(
− (3)3

3
+

(3)2

2
+ 6(3)

)
−
(
− (−2)3

3
+

(−2)2

2
+ 6(−2)

)

=
(
− 9 +

9

2
+ 18

)
−
(8

3
+ 2− 12

)
= 9 +

9

2
− 8

3
+ 10 =

19× 6

6
+

27

6
− 16

6

4. Answer = 125/6 square units.
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(2) Find the area between the curve y = 4x−x2 and the x-axis from x = 0 to x = 5.

Solution

1. Either by using the quadratic equation, or factorising to y = x(4− x), deduce
roots at x = 0 and x = 4.

2. Draw the graph.

3. Since a root occurs in the range, the total area is split in two parts: above the
x-axis in 0 < x < 4, and below the x-axis in 4 < x < 5. We must formulate
these two integrals separately, then add their magnitudes:

A = A1 + A2

=

∣∣∣∣ ∫ 4

0

4x− x2 dx

∣∣∣∣+

∣∣∣∣ ∫ 5

4

4x− x2 dx

∣∣∣∣
=

∣∣∣∣[2x2 − 1

3
x3
]4
0

∣∣∣∣+

∣∣∣∣[2x2 − 1

3
x3
]5
4

∣∣∣∣
=

∣∣∣∣32

3

∣∣∣∣+

∣∣∣∣−7

3

∣∣∣∣
=

32

3
+

7

3

= 13 square units
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(3) Find the area between the curve y = x2 − x− 6 and the x-axis between x = −4
and x = 4, and compare this with the integral:∫ 4

−4
x2 − x− 6 dx

Solution

1. Either by using the quadratic equation, or factorising to y = (x − 3)(x + 2),
deduce roots at x = −2 and x = 3.

2. Draw the graph.

3. This time two roots occur in the range, and so the graph shows three regions.
The integrals over−4 < x < −2 and 3 < x < 4 will give positive results, while
the integral over−2 < x < 3 will be negative.

4. To find the total area we add the magnitudes of the three areas:

A = A1 + A2 + A3

=

∣∣∣∣ ∫ −2
−4

x2 − x− 6 dx

∣∣∣∣+

∣∣∣∣ ∫ 3

−2
x2 − x− 6 dx

∣∣∣∣+

∣∣∣∣ ∫ 4

3

x2 − x− 6 dx

∣∣∣∣
=

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]−2
−4

∣∣∣∣+

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]3
−2

∣∣∣∣+

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]4
3

∣∣∣∣
=

∣∣∣∣38

3

∣∣∣∣+

∣∣∣∣−125

6

∣∣∣∣+

∣∣∣∣17

6

∣∣∣∣
=

38

3
+

125

6
+

17

6

=
109

3
square units

69



5. By comparison, the single integral (where the middle region adds a negative
area) gives a smaller and negative result:

38

3
− 125

6
+

17

6
= −16

3

This is the net area under the curve.

(4) What do you expect the answer of the following integral to be?∫ 2π

0

sin(x)dx

Drawing a sketch, by symmetry we see that the area between 0 < x < π and the
area between π < x < 2π will cancel each other out.

We confirm by calculation that the answer is zero:∫ 2π

0

sin(x) dx =

[
− cos(x)

]2π
0

= (−1)− (−1) = 0
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7.2 Lecture 14: Integration by Parts

• We have seen how to integrate functions using integration by substitution:∫
cos(3x+ 1) dx,

∫
x sin

(
1− x2

)
dx,

∫
3t e−3t

2

dt

In each case, the integrand involves a composite function.

• However, what if we want to integrate the following:∫
t2 ln(t) dt,

∫
(2x+ 1) e3x dx,

∫ π

0

(4x− 1) sin(2x) dx

Inthesecases, theintegranddoesnotusuallyinvolveasignificantcompositefunction,
but does consist of the product of two functions.

• To integrate the product of two functions, we may attempt a technique called “inte-
gration by parts”:

1. Choose one part to be u, and the other to be dv
dx

(or dv
dt

etc. as appropriate).

2. Differentiate u to obtain du
dx

, and integrate dv
dx

to obtain v (don’t bother with
“+c” at this stage).

3. Substitute these four pieces (u, v, du
dx
, dv
dx

) into the following formula and evalu-
ate the second integral (which should be easier than the original):

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

If this second integral is still not possible, then we have made the wrong choice
of u or may have to try integration by substitution instead.

• As a guide for deciding which part we should choose to be u (the part that we will
differentiate to result in an easier second integral): L-A-T-E

1. Log: always choose u = ln(x) if possible.

2. Algebra: a polynomial (x, x2, t3).

3. Trigonometric functions (sin(x), cos(2t)).

4. Exponential functions are least preferable (e2x, e−3t).
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• Examples:

(1)

∫
t2 ln(t) dt

Solution:

Let u = ln(t) and let dv
dt

= t2

Differentiating u:

du

dt
=

1

t

And integrating to obtain v:

v =

∫
dv

dt
dt =

∫
t2 dt =

1

3
t3

Then using the integration by parts formula:∫
t2 ln(t) dt = uv −

∫
v

du

dt
dt

=
(

ln(t)
)(1

3
t3
)
−
∫ (

1

3
t3
)(

1

t

)
dt

=
1

3
t3 ln(t)− 1

3

∫
t2 dt

=
1

3
t3 ln(t)− 1

9
t3 + c

=
1

9
t3
(
3 ln(t)− 1

)
+ c

(2)

∫
(2x+ 1) e3x dx =

1

3
(2x+ 1) e3x−2

9
e3x +c

=
1

9
e3x
(
6x+ 1

)
+ c

(3)

∫
3x e2x+1 dx =

3

2
x e2x+1−3

4
e2x+1 +c

Notes: We may need to employ integration by substitution within these examples.
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• For definite integrals using integration by parts, the formula becomes:

∫ b

a

u
dv

dx
dx =

[
uv
]b
a
−
∫ b

a

v
du

dx
dx

• Example:

(4) I =

∫ π

0

(4x− 1) sin(2x) dx

Solution:

Let u = 4x− 1 and v′ = sin(2x). Then u′ = 4 and v = −1

2
cos(2x)

Substituting into the “by parts” formula for definite integrals:

I =

[(
4x− 1

)(
− 1

2
cos(2x)

)]π
0

−
∫ π

0

(
− 1

2
cos(2x)

)(
4
)

dx

=

[
− 1

2
(4x− 1) cos(2x)

]π
0

+ 2

∫ π

0

cos(2x) dx

=

[
− 1

2
(4x− 1) cos(2x)

]π
0

+ 2

[
1

2
sin(2x)

]π
0

=

[
− 1

2
(4x− 1) cos(2x)

]π
0

+

[
sin(2x)

]π
0

=

[
− 1

2
(4x− 1) cos(2x) + sin(2x)

]π
0

=

(
− 1

2
(4π − 1) cos(2π) + sin(2π)

)
−
(
− 1

2
(−1) cos(2 · 0) + sin(2 · 0)

)

= −1

2
(4π − 1)− 1

2

= −2π
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• More complicated questions require multiple applications of integration by parts.
This is especially common where one part is a trigonometric or exponential term,
and the other is a polynomial function of order two or higher (that is, a quadratic or
cubic function etc.).

In this example, we will need to use it twice. The original integral (I1) involves
the product of a quadratic function and a trigonometric function. The first use of
integration by parts yields an integral (I2) that is simpler - the product of a lin-
ear function and a trigonometric function - but still not simple enough to evaluate
immediately. A second application of integration by parts reduces this to a simple
integral of a trigonometric term:

I1 =

∫
(2x2 + 3x+ 1) cos(4x− 7) dx

= (2x2 + 3x+ 1)
1

4
sin(4x− 7)− I2

where

I2 =

∫
1

4
(4x+ 3) sin(4x− 7) dx

= − 1

16
(4x+ 3) cos(4x− 7) +

1

16
sin(4x− 7) + c

Don’t forget to add in the constant of integration at the very end of the solution!
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• Advanced examples

Certain problems (usually involving both a trigonometric part and an exponen-
tial part) appear to go in circles, so that performing two applications of integration
by parts takes you back to some multiple of the original integral.

These can be solved by treating the original integral as an algebraic variable and
transposing the equation to solve for it.

Example:

I1 =

∫
sin(x) ex−1 dx

Performing integration by parts once here results in:

I1 = sin(x) ex−1−I2

where

I2 =

∫
ex−1 cos(x) dx = cos(x) ex−1 +

∫
sin(x) ex−1 dx

by a second use of integration by parts. Hence,

I1 = sin(x) ex−1−(cos(x) ex−1 +I1)

= sin(x) ex−1− cos(x) ex−1−I1

But we can transpose this equation and solve for I1 as follows:

I1 =
ex−1

2

(
sin(x)− cos(x)

)
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8.1 Lecture 15: Matrices

• Definition: A matrix is a rectangular array of variables, enclosed by either square
or round brackets. They are denoted by a capital letter. A one-dimensional matrix is
alsoknownasavector. The individual componentsof thematrixare calledelements.

• Order of a matrix: the size and shape, described by the number of rows and then
the number of columns.

• Examples:

(
1
3

) (
0 2
1 −1

) (
5 3 −6 0 −1

) 7 −3
1 4
9 −2

 4 8 1
0 6 −5
2 1 −1


2× 1 2× 2 1× 5 3× 2 3× 3

• Square matrix: these have order n× n (where n is an integer). They have special
properties.

8.1.1 Basic matrix operations

• Addition and Subtraction:
We can add or subtract two matrices only if they have precisely the same order (same
number of rows and same number of columns). In this case we add or subtract each
of their corresponding elements.

In general, for a pair of 2× 2 matricesA =

(
a1,1 a1,2
a2,1 a2,2

)
andB =

(
b1,1 b1,2
b2,1 b2,2

)
:

A±B =

(
a1,1 a1,2
a2,1 a2,2

)
±
(
b1,1 b1,2
b2,1 b2,2

)
=

(
a1,1 ± b1,1 a1,2 ± b1,2
a2,1 ± b2,1 a2,2 ± b2,2

)
• Scalar multiplication:

A scalar is a real or complex number, in contrast to a vector or matrix. To multi-
ply a matrix by a scalar, we simply multiply (“scale”) each element of the matrix by
that scalar. Scalar multiplication is always admissible for any scalar and any matrix.

In general, for a scalar α and a matrixA =

(
a1,1 a1,2
a2,1 a2,2

)
:

α

(
a1,1 a1,2
a2,1 a2,2

)
=

(
αa1,1 αa1,2
αa2,1 αa2,2

)
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• Examples:

A =

(
7
0

)
, B =

(
−1 3
4 0

)
, C =

(
2 1
0 1

)
Find each of the following, if they exist:

(i) 2A (ii) − 5B (iii) B + C

(iv) B − A (v) 2B + C (vi) C − 3B

Solution:

(i) 2A = 2

(
7
0

)
=

(
2(7)
2(0)

)
=

(
14
0

)

(ii) − 5B = −5

(
−1 3
4 0

)
=

(
5(−1) 5(3)
5(4) 5(0)

)
=

(
5 −15
−20 0

)

(iii) B + C =

(
−1 3
4 0

)
+

(
2 1
0 1

)
=

(
−1 + 2 3 + 1
4 + 0 0 + 1

)
=

(
1 4
4 1

)

(iv) B − A =

(
−1 3
4 0

)
−
(

7
0

)
Invalid.

AsB is a 2× 2 matrix whileA is a 2× 1 matrix, their orders differ and they cannot
be subtracted.

(v) 2B + C = 2

(
−1 3
4 0

)
+

(
2 1
0 1

)
=

(
2(−1) 2(3)
2(4) 2(0)

)
+

(
2 1
0 1

)

=

(
−2 6
8 0

)
+

(
2 1
0 1

)
=

(
−2 + 2 6 + 1
8 + 0 0 + 1

)
=

(
0 7
8 1

)

(vi) C − 3B =

(
2 1
0 1

)
− 3

(
−1 3
4 0

)
=

(
2 1
0 1

)
−
(

3(−1) 3(3)
3(4) 3(0)

)

=

(
2 1
0 1

)
−
(
−3 9
12 0

)
=

(
2− (−3) 1− 9
0− 12 1− 0

)
=

(
5 −8
−12 1

)
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8.1.2 Matrix multiplication

• Two matrices can be multiplied only if the number of columns in the first matrix
matches the number of rows in the second matrix.

• If this is satisfied, the order of the resulting matrix is given by the number of rows in
the first matrix and the number of columns in the second matrix.

• Each element in the result is given by matching the corresponding row of the first
matrix with the corresponding column from the second matrix and taking the sum
of the product of each pair.

• Matrix multiplication is a non-commutative operation, meaning that the order
of multiplying the matrices is important and can not be changed. For two matrices
A and B, in general we find that AB 6= BA. One of these may not even exist while
the other does, or they may both exist but give different results.

• Examples:
Let

A =

(
1 0
2 −1

)
, B =

(
2
−1

)
, C =

(
−1 2
4 5

)

Calculate (i)BC, (ii)CB, (iii)AC and (iv)CA:

Solutions:

(i) BC =

(
2
−1

)(
−1 2
4 5

)

B has order 2 × 1 while C has order 2 × 2, so the number of columns of B (1) does
not equal the number of rows of C (2). Thus, this is not a valid operation and BC
does not exist.

(ii) CB =

(
−1 2
4 5

)(
2
−1

)

The orders are 2 × 2 and 2 × 1. The inner two numbers match, so this is a valid
multiplication. From the outer two numbers, the result will be a 2× 1 matrix:
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(
−1 2
4 5

)(
2
−1

)
=

(
(−1)(2) + (2)(−1)
(4)(2) + (5)(−1)

)
=

(
−4
3

)

(iii) AC =

(
1 0
2 −1

)(
−1 2
4 5

)

The orders are both 2× 2, so the inner two numbers match and from the outer two
numbers, the result will be another 2× 2 matrix:

(
1 0
2 −1

)(
−1 2
4 5

)
=

(
(1)(−1) + (0)(4) (1)(2) + (0)(5)

(2)(−1) + (−1)(4) (2)(2) + (−1)(5)

)
=

(
−1 2
−6 −1

)

(iv) CA =

(
−1 2
4 5

)(
1 0
2 −1

)

Again the orders are both 2× 2, so the inner two numbers match and from the outer
two numbers, the result will be another 2× 2 matrix:

(
−1 2
4 5

)(
1 0
2 −1

)
=

(
(−1)(1) + (2)(2) (−1)(0) + (2)(−1)
(4)(1) + (5)(2) (4)(0) + (5)(−1)

)
=

(
3 −2
14 −5

)

These results demonstrate non-commutativity: BC does not exist while CB does,
and while bothAC andCA do exist they are not equal to each other.
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8.1.3 Special matrices

• Identity Matrix:
These are square matrices with 1 on the leading diagonal elements, and 0 everywhere
else. They act like the number 1 when it comes to matrix multiplication, being the
only matrices that satisfy:

AI = A = IA for any matrixA of suitable order.

Consider the 2× 2 and 3× 3 identity matrices:

I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1



• Zero Matrix:
This is a square matrix where every entry is zero. For example,

O =

(
0 0
0 0

)
or O =

0 0 0
0 0 0
0 0 0


It acts like the number 0 in matrix addition and matrix multiplication, so:

A+O = A = O + A

and

AO = O = OA for any matrixA of suitable order.
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8.1.4 Determinant

• Square matrices have a determinant, which is a scalar associated with the matrix. In
matrix applications to geometry, it is associated with ideas of size and scaling factor.

For a square matrix A, the determinant may be denoted |A| or det(A) or by re-
placing the brackets with vertical lines.

For a general 2× 2 matrix

A =

(
a b
c d

)
the determinant is found by subtracting the product of the second diagonal from the
product of the lead diagonal. Hence:

|A| = ad− bc

• Example

Calculate the determinant ofC =

(
−1 2
4 5

)
:

Solution:

This is a square matrix, so the determinant does exist.

|C| =
∣∣∣∣−1 2

4 5

∣∣∣∣ = (−1)(5)− (2)(4) = −5− 8 = −13
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8.2 Lecture 16: Solving simultaneous equations with matrices

• Independent opening practice working with matrices.

Given A =

(
2 0
−1 1

)
B =

(
1
1

)
Find (if they exist):

A+B, 3B, AB, BA, det(A)

• Inverse Matrix:

For a square matrixA, there may exist an inverse matrixA−1, such that:

AA−1 = I and A−1A = I

For a general 2× 2 square matrixA =

(
a b
c d

)
, the inverse matrix is calculated by:

A−1 =
1

|A|

(
d −b
−c a

)
=

1

ad− bc

(
d −b
−c a

)

where |A| is the determinant ofA.

If the determinant of a square matrix is equal to zero, then that matrix
has no inverse.

• Examples:

For the following square matrices, find the inverse matrix if it exists.

(1) A =

(
1 −1
0 2

)
A−1 =

1

(1)(2)− (−1)(0)

(
2 1
0 1

)
=

(
1 1/2
0 1/2

)

(2) B =

(
1 0
−3 2

)
B−1 =

1

(1)(2)− (0)(−3)

(
2 0
3 1

)
=

(
1 0

3/2 1/2

)

(3) C =

(
1 1
−1 −1

)
(Zero determinant - Inverse does not exist.)

83



• Simultaneous Equations:

We may be familiar with solving systems of two simultaneous linear equations using
the elimination or substitution methods. However, they can also be solved using an
alternative matrix method. Computer systems can easily apply the same technique
to solving systems of hundreds of variables and equations.

Consider a pair of simultaneous equations involving variables x and y:

ax+ by = p

cx+ dy = q

where a, b, c, d, p, q are (known) constants, and we wish to solve for x and y.

1. Ensure the equations are in the consistent form above, then we can represent
this system by a single matrix equation:(

ax+ by
cx+ dy

)
=

(
p
q

)
=⇒

(
a b
c d

)(
x
y

)
=

(
p
q

)
and so:

AX = B

whereA =

(
a b
c d

)
is the matrix of coefficients, the vectorX =

(
x
y

)
contains

the unknown variables, andB =

(
p
q

)
.

2. Calculate the inverse matrixA−1 of the matrix of coefficients.

Note: If A has determinant zero, and thus cannot be inverted, the method
fails at this point. This indicates that the pair of equations either have infinite
solutions, or zero solutions.

3. Pre-multiply both sides by the inverse matrix to solve for the vectorX:

A−1AX = A−1B =⇒ X = A−1B

4. From the entries inX, read off the values of x and y.

5. Verify solutions by substituting the values of x and y back into the original
equations.
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• Example 1

Solve for x and y:

5x+ 2y = 10

4x− 3y = 14

Re-writing this as a matrix equation:(
5 2
4 −3

)(
x
y

)
=

(
10
14

)

so we haveAX = B, where

A =

(
5 2
4 −3

)
, X =

(
x
y

)
, B =

(
10
14

)
Then,

A−1 =
1

(5)(−3)− (2)(4)

(
−3 −2
−4 5

)
=
−1

23

(
−3 −2
−4 5

)
and so

X = A−1B =
−1

23

(
−3 −2
−4 5

)(
10
14

)
=
−1

23

(
−58
30

)
=

(
58/23
−30/23

)
Thus we find:

x =
58

23
≈ 2.52 and y = −30

23
≈ −1.30

Verifying:

5x+ 2y = 5

(
58

23

)
+ 2

(
− 30

23

)
=

290

23
− 60

23
=

230

23
= 10

and

4x− 3y = 4

(
58

23

)
− 3

(
− 30

23

)
=

232

23
+

90

23
=

322

23
= 14

as required.
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• Example 2

Solve for x and y:

3x− 5y = 7

2x = 20− 4y

First we must transpose the second equation so that both are in a consistent format:

3x− 5y = 7

2x+ 4y = 20

Re-writing this as a matrix equation:(
3 −5
2 4

)(
x
y

)
=

(
7
20

)
so we haveAX = B, where

A =

(
3 −5
2 4

)
, X =

(
x
y

)
, B =

(
7
20

)
Then,

A−1 =
1

(3)(4)− (−5)(2)

(
4 5
−2 3

)
=

1

22

(
4 5
−2 3

)
and so

X = A−1B =
1

22

(
4 5
−2 3

)(
7
20

)
=

1

22

(
128
46

)
=

(
64/11
23/11

)
Thus we find:

x =
64

11
≈ 5.82 and y =

23

11
≈ 2.09

Verifying:

3x− 5y = 3

(
64

11

)
− 5

(
23

11

)
=

192

11
− 115

11
=

77

11
= 7

and

2x+ 4y = 2

(
64

11

)
+ 4

(
23

11

)
=

128

11
+

92

11
=

220

11
= 20

as required.
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9 Week 9
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9.1 Lecture 17: Solving Trigonometric Equations

• Recall the graphs of sine, cosine and tangent and key features.

• Remember to use radians!

• Example 1

Use this to illustrate the problem of multiple solutions due to periodicity.

How many values of x are there such that:

(a) cos(x) = 0.24?

Answer: 1.328 and 4.955, but there are infinitely many values!

(b) cos(x) = 3?

Answer: None - outside the possible range of values.

• A solution to cos(x) = 0.24 is a value of x on the graph where the straight line
y = 0.24 intersects with the curve y = cos(x).

• Clearly, if there are going to be any solutions to a trigonometric equation, there will
actually be infinitely many unless we restrict our interest to a specific range of x.
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• Method: Solving trigonometric equations of the form sin(x) = a

1. Use the inverse trigonometric function on your calculator to obtain the prin-
cipal value:

x0 = sin−1(a)

This is the first solution, and will be the value closest to the y-axis.

2. Forsineandcosine, usethesymmetrypresent inthegraph(oraCASTdiagram)
to locate the other solution that occurs within the first cycle. Often, but not
always, this takes the form x1 = π − x0 for sine, and x1 = −x0 for cosine.

3. To find all of the other solutions, then:

– For sine and cosine, add and subtract integer multiples of 2π to both x0
and x1 until we are outside of the stated range.

– For tangent, add and subtract multiplies ofπ to the principal valuex0 until
we are outside of the stated range.

Note: To avoid confusion it may help to use a specific algorithm such as
alternately adding 2π to x0 and x1 until both are beyond the upper limit.

4. Substitute each final answer back into the original formula sin(x) = a to verify
them.

It is important to use a high degree of precision when calculating each solution, as
errors may compound as we use x0 to determine x1 and then use that determine
subsequent solutions. In the following solutions, we use 4 d.p. in all cases as a
sufficient level of precision.
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• Example 2

Solve sin(x) = 0.7 for−2π ≤ x ≤ 3π:

First, note that the range approximates to−6.2832 ≤ x ≤ 9.4248.

Obtain the principal value:

x0 = sin−1(0.7) = 0.7754

From the symmetry of the first peak on the graph, the distance between the origin
and x0 is the same as the distance back from x = π to the other solution. Thus:

x1 = π − x0 = π − 0.7754 = 2.3662

Then add and subtract multiples of the period 2π until we have exhausted the range:

x2 = x0 + 2π = 0.7754 + 2π = 7.0586

x3 = x1 + 2π = 2.3662 + 2π = 8.6494

x4 = x0 + 4π = 7.0586 + 2π = 13.3418 (Too large)

x5 = x1 − 2π = 2.3662− 2π = −3.9170

x6 = x0 − 2π = 0.7754− 2π = −5.5078

x7 = x1 − 4π = −3.9170− 2π = −10.2002 (Too small)

Hence, we obtain six solutions for x in the range:

0.7754, 2.3662, 7.00586, 8.6494, −3.9170, −5.5078

Confirm by substituting the values back in, and by looking at the graph, that our
results are sensible.
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• Example 3

Find all values of x in the range−2π ≤ x ≤ 4π for which tan(x) = 2.6:

First, note that the range approximates to −6.2832 ≤ x ≤ 12.5664 and obtain
the principal value:

x0 = tan−1(2.6) = 1.2036

There is only one solution in a single period of tan (and so we expect six solutions
in the range from −2π to 4π as this covers six periods). Then since it has period
π (instead of 2π like sin and cos), add and subtract multiples of π from this initial
solution:

x1 = x0 + π = 1.2036 + π = 4.3452

x2 = x0 + 2π = 1.2036 + 2π = 7.4868

x3 = x0 + 3π = 1.2036 + 3π = 10.6284

x4 = x0 + 4π = 1.2036 + 4π = 13.7700 (Too large)

x5 = x0 − π = 1.2036− π = −1.9380

x6 = x0 − 2π = 1.2036− 2π = −5.0796

x7 = x0 − 3π = 1.2036− 3π = −8.2212 (Too small)

Hence, we obtain six solutions for x in the range:

1.2036, 4.3452, 7.4868, 10.6284, −1.9380, −5.0796

Confirm by substituting the values back in to tan(x) that our results are sensible.

91



9.1.1 Solving trigonometric equations of the form sin(ax+ b) = c

• We have learned how to find solutions to problems of the form sin(x) = a in a given
range of x.

But what if we want to obtain the solutions to the more general equation:

sin(ax+ b) = c

where a, b, c are constants.

1. Define a new variable u = ax + b to transform this into a problem that we
already know how to solve: sin(u) = c.

2. Calculate the new limits in terms of u, by substituting the limits of x into this
formula.

3. Determine the set of solutions for u.

4. Convert solutions for u back to the corresponding solutions for x using:

x =
x− b
a

5. Verify the final solutions by substituting back into sin(ax+ b) and evaluating.

• Example 4

Solve sin(3x+ 0.2) = 0.5 for−π ≤ x ≤ π.

1. Let u = 3x+ 0.2, then the range becomes−3π + 0.2 ≤ u ≤ 3π + 0.2, or

−9.2248 ≤ u ≤ 9.6248

2. Now the problem has been converted to:

“Solve sin(u) = 0.5 for−9.2248 ≤ u ≤ 9.6248.”
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3. Obtain the principal value:

u0 = sin−1(0.5) =
π

6
= 0.5236

4. From the symmetry of the graph, the other solution in the first period is:

u1 = π − 0.5236 = 2.6180

5. Adding and subtracting multiples of 2π, we find six solutions for u in the ac-
ceptable range. Then convert these back to solutions for x using x = u−0.2

3
:

u In Range? x =
u− 0.2

3

u0 = 0.5236 Yes (0.5236− 0.2)/3 = 0.1079

u0 + 2π = 0.5236 + 2π = 6.8058 Yes 2.2023

u0 + 4π = 0.5236 + 4π = 13.090 No -

u0 − 2π = 0.5236− 2π = −5.7596 Yes −1.9865

u0 − 2π = 0.5236− 4π = −12.043 No -

u1 = 2.6180 Yes 0.806

u1 + 2π = 2.6180 + 2π = 8.9012 Yes 2.9004

u1 − 2π = 2.6180− 2π = −3.6652 Yes −1.2884

u1 − 4π = 2.6180− 4π = −9.9484 No -
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9.2 Lecture 18: General Trigonometric functions

• Example 5

Find all solutions for cos(3x+ 1) = −0.2 in the range−π ≤ x ≤ π.

1. Let u = 3x+ 1, then the problem becomes solving cos(u) = −0.2 in the range
−3π + 1 ≤ u ≤ 3π + 1, or−8.425 ≤ u ≤ 10.425.

2. Obtain the principal value:

u0 = cos−1(−0.2) = 1.7722

3. Then from symmetry obtain the other solution in the first period:

u1 = −u0 = −1.7722

4. Adding and subtracting multiples of 2π, locate all solutions for u in the range.

u In Range? x =
u− 1

3

u0 = 1.7722 Yes (1.7722− 1)/3 = 0.2564

u0 + 2π = 1.7722 + 2π = 8.0554 Yes 2.3518

u0 + 4π = 1.7722 + 4π = 14.339 No -

u0 − 2π = 1.7722− 2π = −4.51106 Yes −1.8370

u0 − 4π = 1.7722− 4π = −10.7942 No -

u1 = −1.7722 Yes 0.9241

u1 + 2π = −1.7722 + 2π = 4.5110 Yes 1.1703

u1 + 4π = −1.7722 + 4π = 10.7942 No -

u1 − 2π = −1.7722− 2π = −8.0554 Yes −3.0185

Of course, u1 < u0, so u1 − 4π < u0 − 4π and thus we know u1 − 4π will
definitely be too small without needing to calculate it.
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9.2.1 Graphs of the form A sin(ax+ b)

• Standard sine wave

Begin with the graph of y = sin(x):

It crosses the x-axis at:

x = . . . , −3π, −2π, −π, 0, π, 2π, 3π, . . .

The max. and min. values of +1 and−1 occur at:

x = . . . , −5

2
π, −3

2
π, −1

2
π,

1

2
π,

3

2
π,

5

2
π, . . .

Weconsiderhowmodifying theparameters inageneralisedsinusoidal functionof the
form y = A sin(ax+ b) + c (whereA, a, b, c are constants) impacts these properties.

• Amplitude:

Consider y = 4 sin(x). All special values occur at the same points, but the maximum
and minimum values become +4 and−4 respectively.

AmplitudeA in y = A sin(x) stretches the graph by a factor ofA along the y-axis.
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• Frequency:

Consider y = sin(3x).

It crosses the x-axis at:

3x = . . . , −3π, −2π, −π, 0, π, 2π, 3π, . . .

which is when

x = . . . , −π, −2

3
π, −1

3
π, 0,

1

3
π,

2

3
π, π, . . .

The max. and min. values of +1 and−1 occur at:

3x = . . . , −5

2
π, −3

2
π, −1

2
π,

1

2
π,

3

2
π,

5

2
π, . . .

which is when

x = . . . , −5

6
π, −3

6
π, −1

6
π,

1

6
π,

3

6
π,

5

6
π, . . .

Sopoints insin(3x)occurthreetimesasoftenasinsin(x), andthegraphis“squashed”
by factor of 3 along the x-axis.

This factor a in sin(ax) is called the frequency.

If the frequency is less than 1, then the graph is “stretched” in the x-axis.
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• Example (Frequency):

Draw the graphs of y = cos(x) and y = cos(2x).
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• Phase:

Consider y = sin(x+ π
6
).

It crosses the x-axis at:

x+
π

6
= . . . , −3π, −2π, −π, 0, π, 2π, 3π, . . .

which is when

x = . . . , −3π− π
6
, −2π− π

6
, −π− π

6
, −π

6
, π− π

6
, 2π− π

6
, 3π− π

6
, . . .

and so when

x = . . . , −19

6
π, −13

6
π, −7

6
π, −π

6
,

5

6
π,

11

6
π,

17

6
π, . . .

The max. and min. values of +1 and−1 occur at:

x+
π

6
= . . . , −5

2
π, −3

2
π, −1

2
π,

1

2
π,

3

2
π,

5

2
π, . . .

which is when

x = . . . , −5

2
π− π

6
, −3

2
π− π

6
, −1

2
π− π

6
,

1

2
π− π

6
,

3

2
π− π

6
,

5

2
π− π

6
, . . .

and so when

x = . . . , −5

3
π, −2

3
π,

1

3
π,

4

3
π, . . .

So y = sin(x+ π
6
) looks like y = sin(x) shifted left along the x-axis by π

6
.

This value b in sin(x+ b) is called the phase.
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• Note: If phase is negative (e.g. y = sin(x− π
6
)), the graph is shifted to the right.

• Interaction between frequency and phase:

If plotting a function of the form sin(ax+ b), first factorise out the frequency:

sin(ax+ b) = sin

(
a
(
x+

b

a

))
This means (i) first squash the sine graph along the x-axis by a factor of a, and then
(ii) shift the resulting graph by b

a
in the negative direction (left).

Example:

sin

(
3x+

π

6

)
= sin

(
3
(
x+

π

18

))
First, draw the graph of sin(3x). Then shift the graph of this function left by b

a
= π

18
:
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• Vertical shift

Adding a value +c to the trigonometric function simply shifts the graph upwards,
and does not affect the locations of any important values or the shape of the curve.

For example, consider y = sin(x) + 4:

The maximum and minimum values are now 1 + 4 = 5 and−1 + 4 = 3 respectively.

• Summary:

For y = A sin(ax+ b) + c

– A is the amplitude. The maximum and minimum values are±A. The graph is
stretched byA along the y-axis.

– a is the frequency. This squashes the graph by a factor of a along the x-axis.

– b is the phase. This shifts the graph leftward by b
a

along the x-axis.

– c is the vertical shift. This shifts the graph upward by c along the y-axis.
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10 Week 10
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10.1 Lecture 19: Trigonometric Rules and Identities

We have already learned some trigonometric rules (SOH-CAH-TOA) that apply specifi-
cally to right-angled triangles and help us calculate unknown sides and angles.

There exist more general rules that apply to any triangle.

Note: when working with triangles, use degrees and not radians as the unit of angle
measurement.

In general, when working with triangles, we think of the sides and angles as existing
in pairs - given an angle (A,B,C) the “corresponding” or “opposite” side (a, b, c) that
pairs with it is the one side that the angle does not actually touch. We always use the same
letter, with uppercase denoting the angle, and lowercase denoting the side.
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10.1.1 The Sine rule

We can use this rule to help us when we already have a side-angle pair that we know:

sin(A)

a
=

sin(B)

b
=

sin(C)

c
or

a

sin(A)
=

b

sin(B)
=

c

sin(C)

10.1.2 Example

Find the missing sides b and c.

1. First, we know the angle (45◦) opposite side b, and we also have a full side-angle pair
(4 and 60◦). Therefore, we can use the sine rule to find b:

b

sin(45)
=

4

sin(60)

Re-arranging to make b the subject:

b =
4 sin(45)

sin(60)
=

4
√

6

3
= 3.266

2. Since we know the other two angles, we can easily find the third angle C using the
fact that (for all triangles) all the angles must sum to 180◦. Thus:

C = 180− (60 + 45) = 75◦

3. Now that we know the angleC, we can employ the sine rule a second time to find it’s
opposing side c:

c =
4 sin(75)

sin(60)
= 4.461
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10.1.3 The Cosine Rule

This rule can be used when either we know all three sides and want to find an angle, or
when we know two sides and the angle opposite the missing side and wish to find that side:

a2 = b2 + c2 − 2bc cos(A) or cos(A) =
b2 + c2 − a2

2bc

10.1.4 Example

Find the missing side a and angleB.

1. Use the cosine rule to find a:

a2 = 72 + 42 − 2× 7× 4× cos(60)

= 49 + 16− 56× 1

2

= 37

Taking the square root:

∴ a =
√

37 = 6.083

2. We can findB using the sine rule:

sinB =
7 sin(60)

6.083

Then taking the inverse sine of both sides:

B = sin−1(0.9966) = 85.27◦
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Alternatively, this could be achieved using the cosine rule, rewritten in the form:

b2 = a2 + c2 − 2ac cos(B)

Hence, substituting in the values of a, b, c:

49 = 37 + 16− 48.664 cos(B)

which, when transposed forB, yields:

B = cos−1(0.0822) = 85.28◦

10.1.5 Proof of Pythagoras’ theorem

Pythagoras’ theorem is actually a special case of this more general cosine rule. If we apply
it to a right-angled triangle, with the angleA = 90◦ being the right-angle, then the oppo-
site side a is the hypotenuse (b and c can simply be the other two sides, it doesn’t matter
which is which). Then, since

cos(90◦) = 0

The cosine rule yields:

a2 = b2 + c2 − 2bc · 0

= b2 + c2

And so we have derived Pythagoras’ theorem!
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10.1.6 Trigonometric Identities

10.1.7 Important identities

An identity is an equation that is true for ALL angles. There are several that relate the
trigonometric functions, and the most important one is:

sin2(A) + cos2(A) = 1

Before we proceed, let’s define some extra trigonometric functions:

sec(A) =
1

cos(A)
, cosec(A) =

1

sin(A)
, cot(A) =

1

tanA

Then we can divide the identity sin2(A)+cos2(A) = 1 by cos2(A), to obtain a new identity:

tan2(A) + 1 = sec2(A) or sec2(A)− tan2(A) = 1

We can use these identities, as well as other rules (such as the definition of tangent in terms
of sine and cosine) to prove other relationships between the trigonometric functions.
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10.1.8 Example

Prove that,

sec4(x)− sec2(x) = tan4(x) + tan2(x)

Solution:

To prove a relationship, we need to either start from the left-hand side (LHS) of the
equation and show, step-by-step, that it is the same as the right-hand side (RHS) or vice-
versa.

In general, it is often easier to start with the “more complicated”-looking side if there
is one, and try to show that it is the same as the “simpler” side. In this particular example,
both sides are about the same, so it doesn’t matter which side we start with.

Start from the LHS:

sec4(x)− sec2(x) = (sec2(x))2 − sec2(x)

= (tan2(x) + 1)2 − (tan2(x) + 1)

= tan4(x) + 2 tan2(x) + 1− tan2(x)− 1

= tan4(x) + tan2(x)

So by using an identity at the second step, expanding the bracket, and then simplifying,
we have arrived at the RHS and thus proven this new relationship.
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10.1.9 Deriving the identity

Using a right-angled triangle and Pythagoras’ Theorem, we can prove the identity:

sin2(x) + cos2(x) = 1

Consider the following
right-angled triangle:

Using SOH-CAH-TOA, we can obtain the following:

sin(B) =
b

c
and cos(B) =

a

c

Rearranging these:

b = c sin(B) and a = c cos(B)

Then substituting both into Pythagoras’ Theorem:

c2 = a2 + b2

= (c cos(B))2 + (c sin(B))2

= c2
(

cos2(B) + sin2(B)
)

Then dividing both sides by c2:

1 = cos2(B) + sin2(B)

This is true for any angleB in radians or degrees.
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10.2 Lecture 20: Trig. formulae for sums and differences

10.2.1 Multiple angle formulae

We will use six formulae that allow us to calculate the sine, cosine and tangent of the sum
of two angles, or the difference between two angles A and B. These are true when using
either radians or degrees.

For sine,

sin(A+B) = sin(A) cos(B) + sin(B) cos(A)

and

sin(A−B) = sin(A) cos(B)− sin(B) cos(A)

Both of these identities can be written together as:

sin(A±B) = sin(A) cos(B)± sin(B) cos(A)

For cosine,

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

and

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

Both of these identities can be written together as:

cos(A+B) = cos(A) cos(B)∓ sin(A) sin(B)

For tangent,

tan(A±B) =
tan(A)± tan(B)

1∓ tan(A) tan(B)
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10.2.2 Example

Suppose that α and β are acute angles (that is, 0 < α, β < 90) such that

sin(α) =
9

41
and cos(β) =

15

17

Find sin(α + β) and cos(α− β).

Solution:

Draw right-angled triangles, and use Pythagoras’ Theorem and SOH-CAH-TOA to find
the other two parts that we don’t yet have. That is: cos(α) and sin(β).

For the first triangle, Pythagoras’ theorem gives:

x2 + 92 = 412

and so

x =
√

412 − 92 = 40

Hence:

cos(α) =
adjacent

hypotenuse
=

40

41
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Similarly, for the second triangle, the side oppositeB is given by:
√

172 − 152 = 8

And thus we obtain

sin(β) =
opposite

hypotenuse
=

8

17

Then we have our four constituent parts of the two formulae that we are trying to find:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

=
9

41
· 15

17
+

40

41
· 8

17

=
455

697

= 0.65

And:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

=
40

41
· 15

17
+

9

41
· 8

17

=
672

697

= 0.96

10.2.3 Special case: Double-angle Formulae

SettingA = B in the sine formula, we obtain:

sin(2A) = 2 sin(A) cos(A)

and settingA = B in the cosine formula gives:
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cos(2A) = cos2(A)− sin2(A)

Then substituting either of these terms using the identity sin2(A) + cos2(A) = 1, we can
obtain:

cos(2A) = 2 cos2(A)− 1 or cos(2A) = 1− 2 sin2(A)

And settingA = B in the tangent formula gives:

tan(2A) =
2 tan(A)

1− tan2(A)

10.2.4 Special case: Half-angle Formulae

To find a formula for the cosine of half of an angle, take the double-angle formula cos(2A) =
2 cos2(A)− 1, setX = 2A and rearrange to solve for cos(X/2):

cos2
(
X

2

)
=

1

2

(
cos(X) + 1

)
or cos

(
X

2

)
=

√
cos(X) + 1

2

Similarly, we can rearrange cos(X) = 1− 2 sin2(X/2) to obtain the half-angle formula for
sine:

sin2

(
X

2

)
=

1

2

(
1− cos(X)

)
10.2.5 Expanding wave expressions of the form R sin(A+ φ)

10.2.6 Example

Write

2 sin(A) + 3 sin(A+ 35)

in the formR sin(A+ φ).

Solution:
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We need to find the values of the constants R and φ that make this true for all values
ofA.

First, use the expansion formula for sin(A+B):

3 sin(A+ 35) = 3
(

sin(A) cos(35) + cos(A) sin(35)
)

so that we have:

2 sin(A) + 3 sin(A+ 35) = sin(A)
(
2 + 3 cos(35)

)
+ cos(A)

(
3 sin(35)

)
Similarly expandR sin(A+ φ):

R sin(A+ φ) = R
(

sin(A) cos(φ) + cos(A) sin(φ)
)

Then equating these two equations:

sin(A)
(
2 + 3 cos(35)

)
+ cos(A)

(
3 sin(35)

)
= sin(A)

(
R cos(φ)

)
+ cos(A)

(
R sin(φ)

)
Match the coefficients of sin(A) and cos(A):

R cos(φ) = 2 + 3 cos(35), R sin(φ) = 3 sin(35)

Divide one of these equations by the other to find the phase angle φ:

tan(φ) =
R sin(φ)

R cos(φ)
=

3 sin(35)

2 + 3 cos(35)
= 0.386

∴ φ = tan−1(0.386) = 21.11◦

(Note: if this gave a negative value, we would add 360◦ (or 2π if we were using radians) to
make φ positive and preserve the original sine functions)

To find the amplitude:

(
R cos(φ)

)2
+
(
R sin(φ)

)2
=
(
2 + 3 cos(35)

)2
+
(
3 sin(35)

)2
R2
(

cos2(φ) + sin2(φ)
)

= 22.83

R2 = 22.83
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Hence:

R = 4.78

Thus:

2 sin(A) + 3 sin(A+ 35) = 4.78 sin(A+ 21.11◦)
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11 Week 11
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11.1 Lecture 21: Exponential and Natural Log functions

• From Lecture 1, recall the exponential function: y = ex or y = exp(x).

The value is defined at each point by the limit:

y = ex = lim
n→∞

(
1 +

x

n

)n
The constant e (Euler’s number) can be found by setting x = 1 to be 2.71828 . . .

• We often use the independent variable t when using the exponential function to
decribe time-dependent functions of growth and decay.

• As t increases, et very quickly gets extremely large. We say that it tends to infinity:

et →∞ as t→∞

As t becomes large and negative, et becomes very small - but never actually reaches
zero or becomes negative.

et → 0 as t→ −∞

• The graph of y = e−t looks like y = et reflected in the y-axis. Hence,

e−t → 0 as t→∞, and e−t →∞ as t→ −∞

• Both graphs have a y-intercept of e0 = 1.
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• The Natural Log function

This is written as y = loge(x) (“log base e”) or y = ln(x), where x is positive
(x > 0). It is the inverse of the exponential function y = ex. That is,

If y = ex then x = ln(y)

Visually, this means that the graph is the same as the exponential function with the
axes switched.

• As x gets large and positive (i.e. as x → ∞), then y = ln(x) increases indefinitely,
so y →∞. However this does not happen very quickly - it is slower than exponential
growth.

• ln(1) = 0 so the x-intercept is at x = 1.

• As x approaches zero (from positive values) y = ln(x) gets very large and negative,
so y → −∞ as x→ 0.

• ln(x) is not defined for x = 0 or for any negative values of x.

• Laws of the Natural Log

For any real numbers x and y:

ln(xy) = ln(x) + ln(y)

ln(x/y) = ln(x)− ln(y)

ln
(
xn
)

= n ln(x)

ln(1) = 0, ln
(

e1
)

= 1, ln
(

ex
)

= x
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• Example 1

Show the following using the laws of logs:

(a) ln(24) = ln(3) + 3 ln(2)

(b) ln(32) = 5 ln(2)

(c) ln

(
5

4

)
= ln(5)− 2 ln(2)

(d) ln

(
327

5

)
= 2 ln(3) + ln(7)− ln(5)

(e) ln

(
xy

z2

)
= ln(x) + ln(y)− 2 ln(z)

• When solving equations with logs and exponential functions, the key is that log()
and exp() are inverse operations, so they can be used to undo each other as required.

• Example 2

Make x the subject of y = A ekx whereA = 2 and k = 4.

Solution:

y = 2 e4x

1. Divide by 2 to get rid of the 2:

y

2
= e4x

2. Now undo the exponential by taking the ln of both sides and using the rule
above that ln

(
e4x
)

= 4x:

ln

(
y

2

)
= ln

(
e4x
)

= 4x

3. Divide both sides by 4:

x =
1

4
ln

(
y

2

)
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• Example 3

Solve the following equation for P :

x =
ln(P/21)

−0.00013

Solution:

Begin by multiplying both sides by−0.00013:

−0.00013x = ln(P/21)

Use the exponential function to “undo” the log:

e−0.00013x = eln(P/21) =
P

21

Finally multiply both sides by 21 to make P the subject:

P = 21 e−0.00013x

So P experiences exponential decay as x increases.
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11.2 Lecture 22: Exponential and Logarithmic word problems

• Real-life growthanddecayprocessesareoftenmodelledusingexponential functions.
These can be manipulated and solved using logarithms.

• For each question, read the question carefully to determine: what is the information
we are given, and what quantity is it that we are trying to find?

• Example 1

The growth formula for the number of websites on the internet is given by

W = 65000 e0.7t

where W is the number of websites, and t is the time in years from a fixed starting
date. How many years will it take for there to be 60 million websites?

LetW = 60000000, then the equation becomes:

60000000 = 65000 e0.7t

We want to solve this for t:

60000000

65000
= e0.7t

Simplifying,

12000

13
= e0.7t

Then to “undo” the exponential, we can take the natural log of both sides:

ln

(
12000

13

)
= ln

(
e0.7t

)
= 0.7t

So, dividing both sides by 0.7, we obtain a solution for t:

t =
1

0.7
ln

(
12000

13

)
= 9.75 years from the start date
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• Example 2

Suppose the population P (in millions) of a particular country is modelled by the
following formula:

P = A ekt

where t is the time (in years) since 1975, and A and k are unknown constants. The
population was counted as 10 million in January 1975 and again as 15 million in
January 2000.

(i) What was the forecasted population in 2010?

(ii) What year did the population exceed 20 million?

Solution:

For these questions, we begin by using the given sets of information to find the
constants:

Using P (t = 0) = 10, we find:

10 = A ek×0 = A× 1 = A

Hence,

A = 10

Then usingA = 10 and P (t = 25) = 15, we get:

15 = 10 e10k

Rearranging to make k the subject:

k =
1

25
ln(15/10) = 0.016219 . . .

Hence,

P = 10 e0.016219t
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(i) 2010 is 35 years after 1975, so set t = 35 and then solve for P :

P (t = 35) = 10 e0.016219×35

= 17.641 . . .

So there will be a population of 17.6 million in 2010.

(ii) We wish to solve for twhen P = 20:

20 = 10 e0.016219t

2 = e0.016219t

ln(2) = ln
(

e0.016219t
)

= 0.016219t

t =
ln(2)

0.016219
= 42.74 . . .

So it is projected to occur 42.7 years after 1975, which is in Autumn 2017.
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• Example 3

Assume that the atmospheric pressure (in kPa) at height h (inm) above sea level is
given by the formula:

P = A e−kh

and you are provided with the following dataset:

P h

93.9 570 (1)

895

75.6 2250 (2)

32.5

(a) Use the table to findA and k.

(b) Determine the missing entries in the table.

Solution:

(a) Using the two complete data sets ((1) and (2)), we can obtain two simultaneous
equations for P and h:

Using (1) we obtain the equation:

93.9 = A e−570k

Using (2) we similarly obtain:

75.6 = A e−2250k

To solve for k first, we divide this first equation by the second to eliminateA:

93.9

75.6
=

A e−570k

A e−2250k
= e−570k−(−2250k) = e−570k+2250k = e1680k

Then taking the natural log of both sides:

ln

(
93.9

75.6

)
= ln

(
e1680k

)
= 1680k

and rearranging:

k =
1

1680
ln

(
93.9

75.6

)
= 0.000129
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Finally, substitute this value for k back into either of our two equations and
solve forA. Using equation (1):

93.9 = A e−570×0.000129

Transposing forA:

A = 93.9÷ e−570×0.000129 = 101.06

Hence,

P = 101.06 e−0.000129h

(b) First substitute in h = 895:

P = 101.06 e−0.000129×895 = 90.0 kPa

Then, set P = 32.5 and solve for h:

32.5 = 101.06 e−0.000129h

Thus,

h =
1

−0.000129
ln

(
32.5

101.06

)
= 8794.4 m

Remember to include units and check that these solutions seem sensible.
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