Lecture 6: Fourier Series (2/3)
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Today we shall cover:

@ Complex Fourier coefficients, known as phasors.
@ The complex form of Fourier Series.

@ A method for calculating the Fourier Series of a periodic
function, using Laplace transforms and this complex form.

@ We shall do two examples of this procedure.
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Revision: Fourier Series

Fourier Series: representing a periodic function f(t) by a
combination of sine and cosine waves of different frequencies:

Fourier Series

f(t) = % + Z an cos(nwt) + Z by sin(nwt)
n=1 n=1

ag, an, b, are constants (“Fourier coefficients”) that we want to
calculate.

° %ao is the DC level of f(t).
@ aj cos(wt) + by sin(wt) is the Fundamental mode.

o a,cos(nwt) + bysin(nwt) is the nt" Harmonic.
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Fourier Series

As more terms in the Fourier Series are calculated, they add to
give a better and better approximation to the true signal:

Fourier Series - 1 term
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Fourier Series

So if we are given a function f(t), how can we calculate the
Fourier coefficients needed to write down its Fourier Series?

The standard method is to use ...

Nteop~ps
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Calculating Fourier Coefficients by Integration

Integral method for calculating Fourier Coefficients

ap, = —/ ) cos(nwt)dt

b, = —/ t)sin(nwt)dt

You will not be expected to use this method on this module, but
you should be aware of it. Instead, we will be using a method
involving Laplace transforms to avoid integration and use what we
have already learned.
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Calculating Fourier Coefficients: The DC level

Recall that the DC level is 3.

We will need to use the integral to calculate this:

Integral method for calculating Fourier Coefficients
2 T
ey — f
ao T /0 (t)dt

Alternatively, the DC level (ap/2) is equivalent to the average
value of f(t) over one complete cycle. In simple cases this can
be calculated from the graph instead of using the integral.
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Complex Fourier Series

f(t) = % + Z ap cos(nwt) + Z by, sin(nwt)

n=1 n=1

Using the relationship between trig. and exponential functions:

cos(¢) + jsin(¢) = e?

We can combine the sine and cosine terms, and obtain the
complex form of the Fourier Series:

Complex form of the Fourier Series of f(t)

f(t) = ? + Re{ ZA,,ef"‘”}

n=1

Dr Gavin M Abernethy Lecture 6: Fourier Series (2/3)



Complex Fourier Series

Now there is only one sequence of complex coefficients, that we
need to determine.

These are the phasors, A,.

Relationship to the real coefficients:

An = anp — jby

an=Re{A,}, and b, =—-Im{A,}
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The phasors can be calculated from a single integral, but they can
also be obtained by Laplace transforms.

Use step functions to define a new function, g, that behaves like f
during the first period 0 < t < T, and is zero everywhere else:

f(t) for0<t<T,

g(t) =
0 otherwise.

Then take the Laplace transform and substitute to get the phasor:
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Method: Determining complex Fourier Series of f(t) using

phasors and Laplace transforms

@ Define
f(t) for0<t<T,

0 otherwise.

@ Obtain the Laplace transform g(s).

© Change the variable to obtain g(jnw).

@ The phasor of the n" harmonic is then A, = 2z (jnw).

© Find the DC level either by integration or the average value.
O State the complex form of the Fourier Series:

f(t) = —+R {ZA eJ"wf}

Dr Gavin M Abernethy Lecture 6: Fourier Series (2/3)



Example 1 (Sawtooth Wave)

v(t)

W

In this example, f(t) = £ during the first cycle.

We want g(t) = % for time 0 < t < T and zero otherwise. This
can be achieved using a combination of step changes that will turn
“on” at time t =0 and “off" at t = T:

g(t) = g (U(t) —U(t— T)> = _,E_<tU(t) —tU(t — T))
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Example 1 (Sawtooth Wave)

Writing the second term in delay form:

g(t) = _’E_<tU(t) (- T)+ T)U(t - T)>

Then taking Laplace transfoms:

2(s) = E{f_(tU(t) — (- T+ T)U(E - T))}

<£{tU(t)} - £{((t -T)+T)U(t - T)})

<£{t} E{t + T} e_ST> using delay theorem

<12 [1 ]e_sr> _ S2£T(1—(1+5T)e_57—)
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Example 1 (Sawtooth Wave)

Changing the variable from s to jnw:

—_ E . —jnw
glnw) = W(l—(l—wnwﬂel ™)
E 27'[_ . 2
= —— — (1-(14+jn=T)e 77
(jn(zw/T>)2T( <“"T > ' >
since w—2—7T
T
7ET2 AN\ _—2mnj
= 47r2,727_(1—(1—i-27rnj)e J)
since j2=-1
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Example 1 (Sawtooth Wave)

Simplifying further,

—ET

g(jnw) = Py <1 — (14 2mnj) e—%"f)

—ET .
= 4712n2<1_ (1+27rnj)-1)

since e 2™ = cos(2mwn) — jsin(2rn) =1 VneN

—ET

= 123 (1—1-2mnj)
~ 2wnjET  ET
a2z~ Jomn
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Example 1 (Sawtooth Wave)

Hence the phasor of the nt" harmonic is:

2 _ .
A, = 7g(1nw)

2 ET

TJ 2mn

.E
= Ji
™n
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Example 1 (Sawtooth Wave)

From looking at the graph, the average value of f(t) over one
cycle is clearly %

Alternatively use integration:

2 ] 2 (TE
= = [ f(t)dt=—= [ =tdt
20 T/o (t) T/O T

2ET1 17
— =z = E
T2(2" |,

So either way, the DC level is:

2

=l E
2
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Example 1 (Sawtooth Wave)

*. Complex form of the Fourier series:

f(t) = —+R {ZA eJ"wf}

Substitute in ag and A,:

(you must state what w is, since only T occured in the question)
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Example 1 (Sawtooth Wave)

To obtain the regular Fourier coefficients:

E
L= Re{A,} = Red j— \ =
a e{An} e{Jﬂn} 0
E —E
n=—Im{A,} = —Imj— = —
by = —imiA} = —m{j= | = =
So the Fourier series with real coefficients is:

E EX1 . [2nnt
f(t)—z—ﬂ_znsln( T )
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Example 2 (Clipped Sawtooth Wave)

R0
E

N

T 1 7

0 T 2T t

In the first cycle 0 < t < T, this wave f(t) is given by:

2Et T
T f0r0<t<7,

f(t) =
E for L <t<T.

Determine the Fourier Series using phasors and Laplace transforms.
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Example 2 (Clipped Sawtooth Wave)

First, use step functions to define g:
g(t) = 2Et{U(t) U(t T/2)} + E{U(t— T/2)— U(t - T)}

Expand the brackets and gather terms with the same time-delay:

g(t) = 2_?(1( £ - 2—$U(t— T/2)+ EU(t— T/2) — EU(t — T)
2Et 2t

= Ut )+E<1—T>U(t—T/2)—EU(t—T)
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Example 2 (Clipped Sawtooth Wave)

The first term has no time delay, and the final term is in delay
form. Therefore we just need to put the middle term in delay form:

E<1— 2;) Ut—T/2) = E(l—i[(t— D +;DU(t— T/2)

= E(l-i(t—D —1)U(t—T/2)

g(t) = E{iw(t) - T(r - g) U(t— T/2) — U(t T)}
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Example 2 (Clipped Sawtooth Wave)

Taking Laplace transforms (using the delay theorem twice):

2(s) z{EGtU(t) _ i(r _ Z) U(t— T/2)— Ut — T)>}

E<$_£{tU(t)} - ic{ <t - Z) u(t - T/2)}

—E{U(t - T)}) by linearity

_ 2 _ 2 —sT/2 —sT
= E(Tﬁ{t} —Tﬁ{t}e L{1}e )
— i_i *ST/2_E —sT

N E<T52 Ts2e se >
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Example 2 (Clipped Sawtooth Wave)

Then substituting s for jnw:

2 . 1 .
= _ o —jnwT /2y —jnw T
g(./nw) E{ T(an)Q(l € ) . € }

Jnw

—2T?2 ’ iT ’
— FE 1 — g7 —27jn
{4Tn2772( e+ 2mn }

. 2T 5 1 )
= — = —1 _ = —
since w=—, J 7 J

I J
— ET o _qy 4
{27r2n2(e )+ 27‘(’[1}

since e ¥ =1 VneN
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Example 2 (Clipped Sawtooth Wave)

Since e " = (—1)",

gin) = ET{ (0 -1+ L
ET

- 27T2n2{((_1)" ~1) +j7m}

Therefore we have the phasor of the n" harmonic:

2 _ . E .
A = 28in) = 5 { (1"~ 1+ jn)}
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Example 2 (Clipped Sawtooth Wave)

From the graph, the average of f(t) over one cycle is:

Exé + le —%
272 2 4

Alternatively we can use the integral:

T/2 2F T
ag = / t)dt = — </ tdt—l—/ Edt)
0 T T/2

C2E(2(1,]T* 7
- 735, 9ne)

_ 2E(21T2 o T\ _3E
T \T24 2) 2
. DC level = @:E
2 4
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Example 2 (Clipped Sawtooth Wave)

*. Complex form of the Fourier Series of f(t) is

f(t) = —+R {ZA ef”“’t}
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Example 2 (Clipped Sawtooth Wave)

To obtain the regular Fourier coefficients:
—2E  for odd n,

—E m2n?
an = Re{A,,} = W(l — (—1)”) =
0 for even n,

—E
by = —Im{A} = —  VneN.
T

Then the real Fourier Series representation for f(t) is

3E  2E 1 2mnt E1 . [27nt
— Z os( >—7rznsm< _,_>

=54 -2 2o\ 77

odd neN

2T

where w = T
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Special Exponential values

In this example we obtained special values of the complex
exponential function. These arise by considering the role of the
argument when writing complex numbers in Euler or polar form.

For any integer (whole number) n:
"™ = cos(2nm) + jsin(2nm) =1+ x0=1

e™ = cos(nm) + jsin(nn)

—1 for odd n,

= cos(nm)+j*x0 = cos(nm) = (—1)" =
+1 for even n.
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Special Exponential values

In summary, the special results to look out for are:

For any integer (whole number) n:

e2n7rj e—2n7rj

= 1
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After today, you should be able to ...

@ Define the complex form of Fourier Series.
@ Explain what phasors are.

@ Determine the complex Fourier Series for a periodic function
using the method of phasors and Laplace transforms.
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This Week

This lecture corresponds to Section 3.5-3.7 of the Course Notes.

Before this week’s tutorial:

@ Attempt Tutorial sheet 6 - practising what we have been
doing today.

In the following lecture we will develop these techniques with some
applications to circuit analysis.
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Bonus information: odd and even functions!

Last week we learned to identify odd and even functions.
Why?

They allow us to take shortcuts when calculating the real
coefficients a, and b,.

The Fourier Series consist of:
f(x) = constant term + cosine terms + sine terms

Notice that if we split up these three parts:
@ The constant term is an even function.

@ The cosine terms add up to give an even function.

@ The sine terms add up to give an odd function.
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Bonus information: odd and even functions!

If f(t) is even, the sine terms must be missing:

by =0

If £(t) is odd, the constant term and cosine terms must be missing:

a=a,=0
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