Lecture 7: Fourier Series (3/3)

Dr Gavin M Abernethy

Further Mathematics, Signals and Systems

Lecture 7

Today we shall cover:

- Applying Fourier Series to circuit analysis.
- In particular, if we are given an input signal and the system's transfer function:
 - 1. We can determine the Fourier series of the **input**.
 - 2. Then (easily!) calculate the Fourier series of the **output**.

We shall be using the complex form of Fourier Series.

Complex Fourier Series

Complex form of the Fourier Series:

$$f(t) = \frac{a_0}{2} + Re \left\{ \sum_{n=1}^{\infty} A_n e^{jn\omega t} \right\}$$

The complex Fourier coefficients ("phasors") are obtained by Laplace transforms:

Phasor of the n^{th} harmonic:

$$A_n = \frac{2}{T}\bar{g}(jn\omega)$$

Concept: Use of Fourier Series in Circuit analysis

- Let f(t) be a periodic input to a linear system.
- What is the effect of the system on the input, encoded in its transfer function G(s)?
- The n^{th} harmonic is modified by the frequency response function $G(jn\omega)$.

Concept: Use of Fourier Series in Circuit analysis

Let A_n be the phasor for the n^{th} harmonic of the input. Then the output phasor V_n is given by:

Phasor of the n^{th} harmonic of the output:

$$V_n = G(jn\omega)A_n$$

So the Fourier Series of the output v(t) is:

Complex Fourier Series of output signal:

$$v(t) = G(0)\frac{a_0}{2} + Re\left\{\sum_{n=1}^{\infty} G(jn\omega)A_n e^{jn\omega t}\right\}$$

This is one reason why Fourier Series (esp. complex form) is useful.

Distortion

- Input phasors are modified by the frequency response function to produce the corresponding output phasor.
- The modulus of A_n is multiplied by the modulus of $G(jn\omega)$ to give the amplitude of the n^{th} harmonic of the output.
- The phase angle (the argument) of $G(jn\omega)$ is added to the phase angle of A_n to give the phase angle of the n^{th} harmonic V_n of the output.

Distortion

Amplitude Distortion

If the modulus of $G(jn\omega)$ depends on n, the amplitude of each harmonic may be scaled by a different factor.

Phase Distortion

If the phase angle of $G(jn\omega)$ depends on n, each phase angle may be altered by a different amount.

Often both types of distortion occur. Either will result in the output waveform having a different shape to the input waveform.

Method: Determining Fourier Series of an output signal

Given a linear circuit and an input signal f(t), we wish to determine the output signal v(t):

- **1** Determine the transfer function G(s) of the system.
- ② Using the method of Laplace transforms, determine the complex Fourier Series of input f(t).
- **3** Evaluate the transfer function at s = 0 to find G(0).
- Multiply the DC level of f(t) by G(0) to determine the DC level of the output.
- Multiply the phasors A_n of the input by the frequency response function $G(jn\omega)$ to determine the phasors of the output.
- **1** Write down the complex Fourier Series of output v(t).

Consider the circuit shown.

The transfer function for this system is:

$$G(s) = 2\left(\frac{1 + sCR}{1 + 2sCR}\right)$$

The frequency response function is therefore:

$$G(jn\omega) = 2\left(\frac{1 + jn\omega CR}{1 + 2jn\omega CR}\right)$$

and at s=0:

$$G(0) = 2\left(\frac{1+0}{1+0}\right) = 2$$

Therefore, given a general input signal with Fourier series:

$$e(t) = \frac{a_0}{2} + Re \left\{ \sum_{n=1}^{\infty} A_n e^{jn\omega t} \right\}$$

the output from this system will be:

$$v(t) = a_0 + Re \left\{ 2 \sum_{n=1}^{\infty} \frac{1 + jn\omega CR}{1 + 2jn\omega CR} A_n e^{jn\omega t} \right\}.$$

For example, consider if the input signal was this pulse wave e(t):

In this case the input phasor is:

$$A_n = a_n - jb_n = \frac{-jE}{\pi n} (1 - \cos(\pi n)) = \begin{cases} \frac{-2Ej}{\pi n} & \text{for odd } n, \\ 0 & \text{for even } n, \end{cases}$$
 and input DC level:
$$\frac{a_0}{2} = \frac{E}{2}$$

Hence for this specific input, the output phasor is:

$$V_n = G(jn\omega)A_n = 2\left(\frac{1+jn\omega CR}{1+2jn\omega CR}\right) imes \left\{egin{array}{ll} rac{-2Ej}{\pi n} & ext{for odd } n, \\ 0 & ext{for even } n, \end{array}
ight.$$

The output DC level is:

$$G(0) \times \frac{a_0}{2} = 2 \times \frac{E}{2} = E$$

So the Fourier Series of the output signal is:

$$v(t) = E + Re\left\{\frac{-4Ej}{\pi} \sum_{\substack{\text{odd } n \in \mathbb{N} \\ T}} \frac{(1+jn\omega \, CR)}{n(1+2jn\omega \, CR)} \, \mathrm{e}^{jn\omega \, t} \,\right\}, \quad \ \omega = \frac{2\pi}{T}$$

Linear Circuit Analysis using Fourier Series

This process consolidates much of what we have studied on this module:

- Finding and manipulating the transfer function of a system (you must be able to do this!)
- Using Laplace transforms to find the complex Fourier Series of an input signal.
- Combining these to determine the Fourier Series of the output signal.

Consider this circuit:

$$e(t) = R(i_1(t) + i_2(t)) + Ri_2(t)$$

$$rac{1}{C}\int_0^t i_1(t)\mathrm{d}t = Ri_2(t)$$
 $v(t) = Ri_2(t)$

R and C are positive constants, e(t) is the input signal and v(t) is the output signal. Given a general input,

$$e(t) = \frac{a_o}{2} + Re\left\{\sum_{n=1}^{\infty} A_n e^{jn\omega t}\right\}$$

Determine the Fourier Series of the corresponding output v(t).

Taking Laplace transforms of each equation:

(1)
$$\bar{e}(s) = R(\bar{i}_1 + 2\bar{i}_2)$$

$$(2) \qquad \frac{1}{sC}\bar{i}_1 = R\bar{i}_2$$

(3)
$$\bar{v}(s) = R\bar{i}_2$$

Then to find the transfer function...

1. Rearrange (2), then substitute it into (1) to eliminate \bar{i}_1 :

From (2):
$$\bar{i}_1 = sCR\bar{i}_2$$

$$\therefore \bar{e}(s) = R(\bar{i}_1 + 2\bar{i}_2) = R(sCR\bar{i}_2 + 2\bar{i}_2)$$
$$= R\bar{i}_2(sCR + 2)$$

2. Substitute in (3) to eliminate \bar{i}_2 :

$$\bar{e}(s) = \bar{v}(s)(sCR + 2)$$

Finally, rearrange this to the transfer function:

$$G(s) = \frac{\bar{v}(s)}{\bar{e}(s)} = \frac{1}{sCR + 2}$$

:. Frequency response function:

$$G(jn\omega) = \frac{1}{jn\omega CR + 2}.$$

Let A_n be the phasors of the n^{th} harmonics of the input with angular frequency $n\omega$.

Then the phasor of the n^{th} harmonic of the output is:

$$V_n = G(jn\omega)A_n = \left(\frac{1}{2 + jn\omega CR}\right)A_n$$

The DC level of the output is:

$$\frac{V_0}{2} = G(0) \times \frac{1}{2} a_0 = \left(\frac{1}{2 + 0 \cdot CR}\right) \times \frac{1}{2} a_0 = \frac{1}{4} a_0$$

Hence if the Fourier series of the input signal is

$$e(t) = \frac{a_0}{2} + Re\left\{\sum_{n=1}^{\infty} A_n e^{jn\omega t}\right\}$$

then the output will be:

$$v(t) = G(0)\frac{1}{2}a_0 + Re\left\{\sum_{n=1}^{\infty}G(jn\omega)A_n e^{jn\omega t}\right\}$$
$$= \frac{a_0}{4} + Re\left\{\sum_{n=1}^{\infty}\frac{1}{2 + jn\omega CR}A_n e^{jn\omega t}\right\}, \qquad \omega = \frac{2\pi}{T}$$

 $G(jn\omega)$ is complex and frequency dependent, \implies expect both amplitude and phase distortion.

Consider if the input was the sawtooth waveform:

Last week we saw that this has phasor:

$$A_n = \frac{Ej}{\pi n}$$

and DC level:

$$\frac{a_0}{2} = \frac{E}{2}$$

Hence for this specific input, the output phasor is:

$$V_n = G(jn\omega)A_n = \frac{1}{2 + jn\omega CR} \times \frac{Ej}{\pi n}$$

$$= \frac{Ej(2 - jn\omega CR)}{\pi n(2 + jn\omega CR)(2 - jn\omega CR)} = \frac{E(2j + n\omega CR)}{\pi n(4 + n^2\omega^2 C^2 R^2)}$$

The output DC level is:

$$G(0) \times \frac{a_0}{2} = \frac{1}{2} \times \frac{E}{2} = \frac{E}{4}$$

... Complex Fourier Series of the output signal:

$$v(t) = \frac{E}{4} + Re\left\{\sum_{n=1}^{\infty} \frac{E(2j + n\omega CR)}{\pi n(4 + n^2\omega^2 C^2 R^2)} e^{jn\omega t}\right\}, \quad \omega = \frac{2\pi}{T}$$

Summary

After today, you should be able to ...

- (From last week) Determine the complex Fourier Series of an input signal from the waveform.
- (From week 4) Find the transfer function from the equations of a circuit.
- Determine the Fourier Series of the output signal of a circuit, given the input.

This Week

This week's lecture corresponds to Section 3.8 of the Course Notes.

Before this week's tutorial:

Attempt Tutorial sheet 7

In the following lecture we will move on to the final topic:

Matrix algebra

Extra Question

Consider the following circuit:

Extra Question

These equations describe the currents i_1 , i_2 , i_3 , input voltage v_i and output voltage v_o , where R_1 , R_2 , C_1 , C_2 are positive constants.

$$v_{i}(t) = \frac{1}{C_{1}} \int_{0}^{t} (i_{1}(t) + i_{2}(t) + i_{3}(t)) dt + R_{1}(i_{2}(t) + i_{3}(t)) dt$$

$$\frac{1}{C_{1}} \int_{0}^{t} i_{1}(t) dt = R_{1}(i_{2}(t) + i_{3}(t))$$

$$R_{2}i_{3}(t) = \frac{1}{C_{2}} \int_{0}^{t} i_{2}(t) dt$$

For a general input $v_i(t)$, find the Fourier Series of the output $v_o(t)$

 $v_0(t) = -R_2i_3(t)$

Extra Question

The transfer function is:

$$G(s) = \frac{\overline{v}_o}{\overline{v}_i} = \frac{-sC_1R_2}{(1 + 2sC_1R_1)(1 + sC_2R_2)}.$$

Therefore, if the Fourier series for the input wave is:

$$v_i(t) = \frac{a_0}{2} + Re\left\{\sum_{n=1}^{\infty} A_n e^{jn\omega t}\right\}, \quad \omega = \frac{2\pi}{T},$$

then the corresponding Fourier series for the output is:

$$v_o(t) = \frac{a_0}{2}G(0) + Re\left\{\sum_{n=1}^{\infty}G(jn\omega)A_n e^{jn\omega t}\right\}$$
$$= Re\left\{\sum_{n=1}^{\infty}\frac{-jn\omega C_1R_2}{(1+2jn\omega C_1R_1)(1+jn\omega C_2R_2)}A_n e^{jn\omega t}\right\}$$