Lecture 9: Matrix Algebra (2/4)

Dr Gavin M Abernethy

Further Mathematics, Signals and Systems

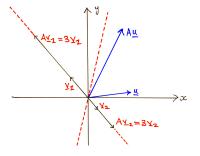
Lecture 9: Calculating eigenvalues and eigenvectors

Today we shall cover:

- Determining the eigenvalues of a 2×2 or 3×3 matrix.
- Determining the eigenvectors of a 2×2 or 3×3 matrix.

What are eigenvalues and eigenvectors?

When a 2×2 matrix A pre-multiplies a position vector, it is usually stretched and rotated. However, there exist "natural axes" of vectors (the eigenvectors) whose direction stays the same, and they are simply scaled by a constant (the eigenvalue).



 $\underline{\mathbf{u}}$ is *not* an eigenvector of A, but both $\underline{\mathbf{v}}_1$ and $\underline{\mathbf{v}}_2$ are, with an eigenvalue of 3. In fact, all vectors on the red axes are eigenvectors.

How to calculate eigenvalues and eigenvectors (1)

To find the eigenvalues λ and eigenvectors $\underline{\mathbf{x}}$ of square matrix A, we first re-arrange the definition $A\underline{\mathbf{x}} = \lambda \underline{\mathbf{x}}$ to:

$$(A - \lambda I)\underline{\mathbf{x}} = \underline{\mathbf{0}}$$

where *I* is the identity matrix.

First, find the eigenvalues by solving the following equation for λ :

Characteristic polynomial of A

$$\det\left(A-\lambda I\right)=0$$

For a 2×2 matrix this will be a **quadratic equation**.

How to calculate eigenvalues and eigenvectors (2)

Then each eigenvalue $\lambda = \lambda_1, \lambda_2, \ldots$, we then obtain a corresponding non-zero eigenvector $\underline{\mathbf{x}} = \underline{\mathbf{e}}_1, \underline{\mathbf{e}}_2, \ldots$

We can do this by substituting in the eigenvalue and solving:

To find the eigenvector:

$$A\underline{\mathbf{x}} = \lambda\underline{\mathbf{x}}$$
 or $(A - \lambda I)\underline{\mathbf{x}} = \underline{\mathbf{0}}$

for the column vector
$$\underline{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

How to calculate eigenvectors

Recall from last week, that there are **infinitely-many** eigenvectors corresponding to each eigenvalue.

This means that when solving the set of equations to find $\underline{\mathbf{x}}$, there is no single solution. Instead, we can choose a value for one of the variables, and then use the equations to obtain the remainder.

This also results in redundancy among the equations.

In the 2×2 case, the two equations obtained will be the **same**.

Determine the eigenvalues and eigenvectors of the following 2×2 matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$

First determine the eigenvalues:

$$A - \lambda I = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda & 2 \\ 3 & -4 - \lambda \end{pmatrix}$$

Therefore, we wish to solve the characteristic equation:

$$|A - \lambda I| = 0$$
 \Longrightarrow $\begin{vmatrix} 1 - \lambda & 2 \\ 3 & -4 - \lambda \end{vmatrix} = 0$

Evaluating the determinant by taking the difference of the product of the diagonals:

$$(1-\lambda)(-4-\lambda)-(2)(3)=0,$$

and so the characteristic polynomial is:

$$\lambda^2 + 3\lambda - 10 = 0$$

Solving this quadratic equation yields two distinct, real, integer roots:

$$\lambda_1 = -5, \quad \lambda_2 = 2$$

These are the two eigenvalues of matrix A.

Next we solve the eigenvectors one at a time.

For the first eigenvalue, $\lambda_1=-5$, call the corresponding eigenvector $\underline{\mathbf{e}}_1=\begin{pmatrix}x\\y\end{pmatrix}$

To find the values of the components x and y, we need to solve:

$$A\underline{\mathbf{x}} = \lambda \underline{\mathbf{x}} \implies A\underline{\mathbf{e}}_1 = -5\underline{\mathbf{e}}_1$$
$$\therefore \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -5 \begin{pmatrix} x \\ y \end{pmatrix}$$

The rows of this matrix equation yield a pair of equations.

$$x + 2y = -5x$$
$$3x - 4y = -5y$$

These two are actually the same equation, rearranged.

Solving either yields:

$$y = -3x$$

If we choose x = 1 (since any scalar multiple of the eigenvector will work), then y = -3.

So one eigenvector corresponding to $\lambda_1=-5$ is:

$$\underline{\mathbf{e}}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

Using the same method, can you now find the second set of eigenvectors, associated with the other eigenvalue $\lambda_2=2$?

Call the corresponding eigenvector $\underline{\mathbf{e}}_2 = \begin{pmatrix} x \\ y \end{pmatrix}$

To find the values of the components x and y, we need to solve:

$$A\underline{\mathbf{x}} = \lambda \underline{\mathbf{x}} \implies A\underline{\mathbf{e}}_2 = 2\underline{\mathbf{e}}_2$$

$$\therefore \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix}$$

The rows of this matrix equation yield a pair of equations:

$$x + 2y = 2x$$
$$3x - 4y = 2y$$

Again these are actually the same equation. Can you see why?

We can rearrange either to:

$$-x + 2y = 0$$

and so

$$x = 2y$$

Choose y = 1, then it follows that x = 2 and so:

$$\underline{\mathbf{e}}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Consider the following 3×3 matrix A.

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

We will calculate the three eigenvalues and associated eigenvectors for this matrix.

The method is the same, but the actual calculations will be a little more involved.

$$|A - \lambda I| = 0 \quad \text{gives} \quad \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 \\ 0 & 1 - \lambda \end{vmatrix} + 0 \begin{vmatrix} -1 & 2 - \lambda \\ 0 & -1 \end{vmatrix} = 0$$

$$\therefore (1-\lambda)\big((2-\lambda)(1-\lambda)-(-1)(-1)\big)+\big((-1)(1-\lambda)-(-1)(0)\big)\\+0\big((-1)(-1)-(2-\lambda)(0)\big)=0$$

This reduces to:

$$(1 - \lambda)(\lambda)(\lambda - 3) = 0$$

Hence there are three eigenvalues: $\lambda = 0, 1, 3$.

Note: In this case, we kept out the common factor of $(\lambda-1)$. You may be *given* the eigenvalues and asked to **verify** them, meaning that you must obtain the characteristic polynomial, then show by substitution that the proposed value satisfies the equation.

e.g. If we had multiplied out the characteristic polynomial to obtain:

$$\lambda^3 - 4\lambda^2 + 3\lambda = 0$$

Then to verify that $\lambda = 3$ is an eigenvalue:

$$(3)^3 - 4(3)^2 + 3(3) = 27 - 4 \times 9 + 9$$

= $27 - 36 + 9$
= 0

i) For the first eigenvalue $\lambda_1 = 0$, let $\underline{\mathbf{e}}_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be the corresponding eigenvector.

$$A\underline{\mathbf{e}}_1 = \lambda_1 \underline{\mathbf{e}}_1 \implies \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Multiplying out the rows gives three equations:

$$x - y = 0$$

$$-x + 2y - z = 0$$

$$-y + z = 0$$

From the first equation, we obtain:

$$x - y = 0 \implies x = y$$

From the third equation:

$$-y + z = 0$$
 \Longrightarrow $z = y$

Thus, if we choose y=1, then it follows that x=1 and z=1. As in the previous example, the final equation is redundant - but we should check by substitution that it agrees with our solution:

$$-x + 2y - z = -(1) + 2(1) - (1)$$

= $-1 + 2 - 1$
= 0 as expected!

Hence one eigenvector is:

$$\underline{\mathbf{e}}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Any other vector with the same direction (same ratio between the components) would also be an eigenvector for $\lambda_1 = 0$.

For example:

$$\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} -31 \\ -31 \\ -31 \end{pmatrix}, \quad \begin{pmatrix} 2.007 \\ 2.007 \\ 2.007 \end{pmatrix} \qquad \text{Or we could say:} \quad \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \forall \alpha \in \mathbb{R}$$

to describe the set of all of them!

ii) $\lambda_2 = 1$:

$$A\underline{\mathbf{e}}_2 = \lambda_2 \underline{\mathbf{e}}_2 \implies \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 1 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

This gives three equations:

$$x - y = x$$

$$-x + 2y - z = y$$

$$-y + z = z$$

From the first equation x - y = x, we have:

$$y = 0$$

Substituting this into -x + 2y - z = y gives:

$$-x-z=0$$
 \Longrightarrow $z=-x$

Choose x = 1, then y = 0 and z = -1, so an eigenvector is:

$$\underline{\mathbf{e}}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

iii) As an exercise now

Can you determine an eigenvector $\underline{\mathbf{e}}_3$ corresponding to the third eigenvalue:

$$\lambda_3 = 3$$

(Don't worry if you get a different answer from your neighbours - ask, is the *direction* the same?)

iii) $\lambda_3 = 3$:

$$A\underline{\mathbf{e}}_3 = \lambda_3 \underline{\mathbf{e}}_3 \implies \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

This gives three equations:

$$x - y = 3x$$

$$-x + 2y - z = 3y$$

$$-y + z = 3z$$

Simplifying,

$$-2x - y = 0$$
$$-x - y - z = 0$$
$$-y - 2z = 0$$

From the first equation:

$$y = -2x$$

and from the third equation:

$$z=-\frac{1}{2}y$$

So choose x = 1, then y = -2 and then z = 1. Hence,

$$\underline{\mathbf{e}}_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

The complete solution to the problem is therefore:

$$\lambda_1 = 0, \qquad \underline{\mathbf{e}}_1 = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\lambda_2 = 1, \qquad \underline{\mathbf{e}}_2 = \beta \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$\lambda_3 = 3, \quad \underline{\mathbf{e}}_3 = \gamma \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

for any real values of the scalar constants α, β, γ .

Unit Vectors

A unit vector has magnitude equal to one.

Given any vector, $\underline{\mathbf{v}}$ we can find the unit vector in the same direction by:

$$\hat{\underline{\mathbf{v}}} = \frac{\underline{\mathbf{v}}}{|\underline{\mathbf{v}}|}$$

Consider the eigenvector:

$$\underline{\mathbf{e}}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

It has magnitude:

$$|\underline{\mathbf{e}}_1| = \sqrt{(1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$$

So a unit vector in the same direction as $\underline{\mathbf{e}}_1$ is:

$$\underline{\hat{\boldsymbol{e}}}_1 = \frac{\underline{\boldsymbol{e}}_1}{|\underline{\boldsymbol{e}}_1|} = \frac{1}{\sqrt{(1)^2 + (-3)^2}} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix}.$$

Summary

After today, you should be able to ...

- Calculate the **eigenvalues** and **eigenvectors** of 2×2 and 3×3 matrices.
- Explain what the eigenvalue-eigenvector pairs of a matrix are.
- Calculate unit eigenvectors.

This Week

This week's lecture corresponds to Section 4.2 of the Course Notes.

Before this week's tutorial:

Attempt Tutorial sheet 9

In the following lecture we will think about representing systems of ODEs by matrix equations. These can then be solved in the final lecture using eigenvalues and eigenvectors.

Extra Question

From Tutorial Sheet 9, Question 4:

Determine the eigenvalues and eigenvectors of:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$