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Lecture 10: The State Variable Description

Today we shall cover:

Obtaining the state variable description of systems of ODEs.

This is a systematic way of writing a system of ODEs as a
matrix equation.
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Motivation

Analysing a circuit may result in a set of ODEs.

It is possible to solve such systems (i.e. to find a formula for
the output) using eigenvalues and eigenvectors.

But for these techniques to be applied, the system needs to be
written as a set of first-order ODEs in the form:

dxi
dt

= f (x1, x2, . . . , xn)

which can then be stated as a matrix equation:

ẋ = Ax + Bu

This can be achieved with a state variable description.
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Theory: The Goal

So, given an ordinary differential equation (ODE) initial value
problem of order n.

For example:

d4x(t)

dt4
+ a3

d3x(t)

dt3
+ a2

d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = 0

The goal is to rewrite this as a set of n first-order ODEs:

dx1(t)

dt
= . . .

dx2(t)

dt
= . . .

dx3(t)

dt
= . . .

dx4(t)

dt
= . . .
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Theory: The Method

1 We define a new set of variables, xi , called state variables.

2 Every variable, apart from external inputs, generates an
additional state variable for each derivative.

3 Rearrange to a set of equations for the derivative of each state
variable, in terms of the state variables and external inputs.

dx1
dt

= . . . ,
dx2
dt

= . . . ,
dx3
dt

= . . .

4 Representing these as a single matrix equation:

The state variable description

ẋ = Ax + Bu
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Theory: External control inputs

The state variable description

ẋ = Ax + Bu

x is the vector containing the state variables x1, x2, . . . , xn.

ẋ is the vector containing the first derivative of each state
variable ẋ1, ẋ2, . . . , ẋn.

External control inputs are encoded in their own vector Bu.

If there is no control input for the problem, the state variable
description is just:

ẋ = Ax
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Theory: Output vector

We may also choose to define some output measurements.

An output vector y can encode both the control inputs and
the measured outputs, constructed from a linear
combination of the state variable and control input vectors:

Output vector:

y = Cx + Du
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Example 1

Determine the state variable description of the circuit shown.

The currents in this circuit are described by a pair of ODEs:

di1(t)

dt
= − i1(t)

CR
− di2(t)

dt
+

1

R

de(t)

dt

d2i2(t)

dt2
= −R

L

di2(t)

dt
+

i1(t)

LC

L, C and R are positive constants and e(t) is an external input.
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Example 1 - Solution

This is in effect a third-order system:

Dependent variable i1 is differentiated once in the equations,
so it generates one state variable.

Dependent variable i2 is differentiated twice, and so generates
two state variables.

x1 ≡ i1, x2 ≡ i2, x3 ≡
di2
dt

Differentiating these:

dx1
dt

=
di1
dt
,

dx2
dt

=
di2
dt
,

dx3
dt

=
d2i2
dt2
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Example 1 - Solution

We want a set of equations for the derivative of each state
variable, in terms only of the state variables (and the input),
and not featuring any derivatives.

Substituting into the original equations:

dx1
dt

= − x1
CR
− x3 +

1

R

de

dt

dx2
dt

= x3

dx3
dt

= −R

L
x3 +

x1
LC

Note: Any set of linear ODEs can be manipulated into this
canonical form of first order ODEs written explicity as:

ẋi = f (x1, x2, . . . , xn)
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Example 1 - Solution

To see how we can represent this set of equations in matrix form,
we need to rewrite them with the coefficients of all state variables
(including zeros) in the same correct order (x1, then x2, then x3):

dx1
dt

= − 1

CR
x1 + 0x2 − x3 + 1× 1

R

de

dt

dx2
dt

= 0x1 + 0x2 + 1x3 + 0× 1

R

de

dt

dx3
dt

=
x1
LC

+ 0x2 −
R

L
x3 + 0× 1

R

de

dt
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Example 1 - Solution

Then putting these equations as the rows of a matrix:

ẋ1
ẋ2
ẋ3

 =


− 1

CR x1 + 0x2 − x3 + 1× 1
R

de
dt

0x1 + 0x2 + 1x3 + 0× 1
R

de
dt

x1
LC + 0x2 − R

L x3 + 0× 1
R

de
dt



=


− 1

CR x1 + 0x2 − x3

0x1 + 0x2 + 1x3
x1
LC + 0x2 − R

L x3

+


1× 1

R
de
dt

0× 1
R

de
dt

0× 1
R

de
dt



=

−1
CR 0 −1
0 0 1
1
LC 0 −R

L

x1
x2
x3

+

1
0
0

( 1
R

de
dt

)
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Example 1 - Solution

Hence: ẋ = Ax + Bu

where

x =

x1
x2
x3

 , A =

− 1
CR 0 −1
0 0 1
1
LC 0 −R

L

 , B =

1
0
0

 , u =
(
1
R

de
dt

)

The column vector x is the vector of state variables.

ẋ = Ax + Bu is the state variable description or state
variable equations.

Ax represents the internal feedback (or internal control).

Bu encodes the single external “control”.
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Example 2

A control system is modelled by the following fourth-order ordinary
differential equation:

d4x(t)

dt4
+ a3

d3x(t)

dt3
+ a2

d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = 0

where x(t) is a scalar and the output of the system.

There is no external control input in this example.

In the case of a system described by a single nth order ordinary
differential equation without external control, the state equations
will be of the form ẋ = Ax, and A will have special properties.
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Example 2 - Solution

The dependent variable x is differentiated four times, so it
generates four state variables:

x1 ≡ x , x2 ≡
dx

dt
, x3 ≡

d2x

dt2
, x4 ≡

d3x

dt3

Differentiating:

dx1
dt

=
dx

dt
,

dx2
dt

=
d2x

dt2
,

dx3
dt

=
d3x

dt3
,

dx4
dt

=
dx4

dt4

Then substitute in the original ODE, and rearrange to obtain
equations for dxi

dt in terms of xi .
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Example 2 - Solution

dx1
dt

= x2

dx2
dt

= x3

dx3
dt

= x4

dx4
dt

= −a0x1 − a1x2 − a2x3 − a3x4

This may be written as ẋ = Ax, where:

A =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3

 , x =


x1
x2
x3
x4


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Example 2 - Solution

In this case, there is no Du term because there is no control input.

The state variable matrix A is in companion form.

Companion form

A companion matrix A consists of 1’s in the entries that are one
above the diagonal, any real numbers in the bottom row entries,
and zeros elsewhere.

This is a standard feature of A when ẋ = Ax is obtained from a
single nth order ODE.
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Example 2 - Solution

The output, as specified, is the original variable x which is identical
to state variable x1. The output vector is:

y =
(
x
)

=
(
x1
)

=
(
1x1 + 0x2 + 0x3 + 0x4

)
=
(
1 0 0 0

)
x1
x2
x3
x4


∴ y = Cx

where C =
(
1 0 0 0

)
and x =


x1
x2
x3
x4


As with the state variable description,

No control input =⇒ no Du term in the output.
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Eigenmode solutions to systems without external control

A system without external control has a state variable
representation ẋ = Ax, where A is a square matrix.

Eigenmodes

For each eigenvalue λi and eigenvector bi pair for A, the
corresponding eigenmode is:

x(t) = ci bi eλi t where ci is any scalar.

These time-dependent functions describe natural vibrations of the
system where all parts move at the same frequency.
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Example of calculating eigenmodes

The state variables for a certain electronic system are given by:

ẋ = Ax, where A =

(
5 2
2 2

)
The eigenvalue and eigenvector pairs for A are:

λ1 = 1, b1 = α

(
1
−2

)
; λ2 = 6, b2 = β

(
2
1

)
Therefore there are two eigenmodes:

x1 = et
(

1
−2

)
; x2 = e6t

(
2
1

)
or any scalar multiples of each of these.
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Eigenmode solutions to systems without external control

What does it mean to “solve” a system?
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Eigenmode solutions to systems without external control

“Solving” means obtaining a function for the state variables x,
so that if we know some initial conditions then we can predict
the value of all of the state variables at any future time.

Adding the eigenmodes of the state variable matrix, scaled by
some particular constants, gives the full solution.

Solution from eigenmodes:

x(t) =
n∑

i=1

ci bi eλi t (but what should the value of ci be?)

To actually find the specific values of the constants ci , we will
need a diagonalisation technique that we shall see next week.
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Example 3

Determine the state variable
description of this circuit:

e(t) = L
di1(t)

dt
+

1

C

∫ t

0

(
i1(t)− i2(t)

)
dt

1

C

∫ t

0

(
i2(t)− i1(t)

)
dt + Ri2(t) + L

di2(t)

dt
+

1

C

∫ t

0
i2(t)dt = 0

v(t) =
1

C

∫ t

0
i2(t)dt

e(t) is an input; R, C , L are constants; and the output is z = Ldi2
dt
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Example 3 - Solution

Before introducing the state variables, differentiate these equations
to remove the integrals:

de

dt
= L

d2i1
dt2

+
1

C
(i1 − i2)

1

C
(i2 − i1) + R

di2
dt

+ L
d2i2
dt2

+
1

C
i2 = 0

dv

dt
=

1

C
i2

Rearranging,

d2i1
dt2

= − 1

LC
i1 +

1

LC
i2 +

1

L

de

dt
d2i2
dt2

=
1

LC
i1 −

2

LC
i2 −

R

L

di2
dt

dv

dt
=

1

C
i2
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Example 3 - Solution

i1 and i2 are each differentiated twice, and so generate two state
variables each.

v is differentiated once, generating one additional state variable.

Hence define five state variables x1, . . . , x5:

x1 ≡ i1, x2 ≡
di1
dt
, x3 ≡ i2, x4 ≡

di2
dt
, x5 ≡ v .

Differentiating:

dx1
dt

=
di1
dt
,

dx2
dt

=
d2i1
dt2

,
dx3
dt

=
di2
dt

dx4
dt

=
d2i2
dt2

,
dx5
dt

=
dv

dt
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Example 3 - Solution

Substitute in the original equations to obtain equations for dxi
dt in

terms of xi :

dx1
dt

= x2

dx2
dt

= − 1

LC
x1 +

1

LC
x3 +

1

L

de

dt

dx3
dt

= x4

dx4
dt

=
1

LC
x1 −

2

LC
x3 −

R

L
x4

dx5
dt

=
1

C
x3

and we have z = Lx4 as a measured output.
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Example 3 - Solution

Explicitly writing in all the coefficients:

dx1
dt

= 0x1+1x2 + 0 x3 + 0 x4 + 0x5 +0
de

dt

dx2
dt

= − 1

LC
x1+0x2 +

1

LC
x3 + 0 x4 + 0x5+

1

L

de

dt

dx3
dt

= 0x1+0x2 + 0 x3 + 1 x4 + 0x5 +0
de

dt

dx4
dt

=
1

LC
x1+0x2 −

2

LC
x3 −

R

L
x4 + 0x5 +0

de

dt

dx5
dt

= 0x1+0x2 +
1

C
x3 + 0 x4 + 0x5 +0

de

dt
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Example 3 - Solution

The state variable description is therefore:

ẋ = Ax + Bu

where

A =



0 1 0 0 0
−1
LC 0 1

LC 0 0

0 0 0 1 0

1
LC 0 −2

LC
−R
L 0

0 0 1
C 0 0


, x =



x1

x2

x3

x4

x5


, B =



0

1

0

0

0


, u =

(
1
L
de
dt

)
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Example 3 - Solution

There is one true output z = Lx4 and the control input is 1
L
de
dt .

The output vector y can encode both of these:

y =

(
z

1
L
de
dt

)
=

(
Lx4
1
L
de
dt

)
=

(
Lx4

0

)
+

(
0

1
L
de
dt

)

=

(
0x1 + 0x2 + 0x3 + Lx4 + 0x5

0x1 + 0x2 + 0x3 + 0x4 + 0x5

)
+

(
0× 1

L
de
dt

1
L
de
dt

)

=

(
0 0 0 L 0
0 0 0 0 0

)
x1
x2
x3
x4
x5

+

(
0
1

)(
1
L
de
dt

)
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Example 3 - Solution

or
y = Cx + Du

where

C =

(
0 0 0 L 0

0 0 0 0 0

)
, x =



x1

x2

x3

x4

x5


, D =

(
0

1

)
, u =

(
1
L
de
dt

)
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Summary

After today, you should be able to . . .

Determine the appropriate number of state variables for a
system.

Obtain the state variable description.

Obtain a suitable output vector if appropriate.

Write down the eigenmodes for a system without external
control.
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This Week

This week’s lecture corresponds to Section 4.3 of the Course Notes.

Before this week’s tutorial:

Attempt Tutorial sheet 10

In the following lecture we will use these ideas to help us solve
systems of ODEs.
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Extra Question: Tutorial Sheet 10, Question 1(a)

A control system with internal feedback has external control inputs
e1(t) and e2(t). The output voltages v1(t) and v2(t) obey:

d2v1
dt2

= 4v1 − 5v2 + 5e1

dv2
dt

= 6v1 − 6v2 + 3
dv1
dt

+ 2e2

It is possible to measure both inputs and v1 only.

Obtain the state variable equations in the form ẋ = Ax + Bu where
A is a 3× 3 matrix, x is a 3-dimensional vector of suitably-defined
state variables, B is a 3× 2 matrix, and u is a 2-dimensional vector
of the external controls.

Also obtain a suitable output vector (encoding the true output and
the control input) in the form y = Cx + Du.
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