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Lecture 11

Today we shall cover:

Modal matrices.

The diagonalisation process to determine the state transition
matrix for an ODE system.

How to obtain the solutions to the system from the state
transition matrix and some initial conditions.

You will need to be able to:

Obtain the state variable description of an ODE system.

Calculate eigenvalues and eigenvectors of square matrices.

Perform matrix multiplication, and invert 2× 2 matrices.
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Motivation

Consider this relatively simple first-order linear ODE:

dx(t)

dt
= kx(t)

where k is a constant and the initial condition x(0) = x0 is known.

Last year, you saw that the solution to this initial value problem is:

x(t) = x0 ekt

(This could be obtained by Laplace transforms or by separation of
variables.)
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Theory - the State Transition Matrix

Now consider a system of multiple such first-order ODEs:

ẋ = Ax

Extending the previous result, the solution to this vector problem
turns out to be:

x(t) = eAt x(0)

where eAt is the exponential matrix or state transition matrix.

With some initial conditions x(0), we can use this formula to
predict the state variables x(t) at any future time.

The state transition matrix is obtained using a diagonalisation
process involving a modal matrix T of the matrix A.
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Modal matrices

Modal matrices

Given an n × n matrix A, a modal matrix T is constructed
column-by-column using the eigenvectors of A:

T =
(
e1, e2, . . . , en,

)
where each column vector ei is the i th eigenvector of A. The
actual ordering of eigenvectors is not important so long as the
ordering always matches with the corresponding eigenvalues.

There are infinitely many modal matrices, since the order of the
eigenvectors is interchangable, and the eigenvectors themselves are
not unique. Each column of a modal matrix of A could be scaled
separately to give another matrix that is still a modal matrix of A.
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Method: Obtaining the state transition matrix

Given a system of n linear first-order ODEs formulated as ẋ = Ax,
where A is a square n × n matrix:

1 Find eigenvalues λ1, . . . , λn and eigenvectors e1, . . . , en of A.

2 Construct the diagonal matrix of eigenvalues
D = diag(λ1, λ2, . . . , λn) and the n × n modal matrix T
where the i th column consists of the eigenvector of A
corresponding to the eigenvalue in the i th diagonal entry of D.

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 and T =
(
e1, . . . , en

)
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Method: Obtaining the state transition matrix

3 Construct the diagonal matrix of exponentials eDt

eDt = diag(eλ1t , eλ2t , . . . , eλnt) =


eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


4 Perform two matrix multiplications to calculate eAt

State Transition Matrix:

eAt = T eDt T−1

5 The solution is given by:

Solution of the state varaibles:

x(t) = eAt x(0)
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Example 1

A simple continuous-time model of population dynamics for two
species is given by:

ẋ = Ax, where A =

(
5 2
2 2

)
with initial conditions x(0).

The eigenvalue and eigenvector pairs of A are:

λ1 = 1, b1 = α

(
1
−2

)
; and λ2 = 6, b2 = β

(
2
1

)
Obtain the solution of the state variables.
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Example 1 - Solution

Take D = diag(1, 6), then a modal matrix of A is: T =

(
1 2
−2 1

)

eDt = diag(et , e6t) =

(
et 0
0 e6t

)
Calculate the inverse of T :

T−1 =
1

(1)(1)− (2)(−2)

(
1 −2
2 1

)
=

1

5

(
1 −2
2 1

)

Then performing matrix multiplication,

T eDt =

(
1 2
−2 1

)(
et 0
0 e6t

)
=

(
et 2 e6t

−2 et e6t

)
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Example 1 - Solution

Second matrix multiplication:

eAt = (T eDt)T−1

=
1

5

(
et 2 e6t

−2 et e6t

)(
1 −2

2 1

)

=
1

5

( (
et +4 e6t

) (
− 2 et +2 e6t

)(
− 2 et +2 e6t

) (
4 et + e6t

) )
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Example 1 - Solution

Then x(t) = eAt x(0), and so:

(
x1(t)

x2(t)

)
=

1

5

( (
et +4 e6t

) (
− 2 et +2 e6t

)(
− 2 et +2 e6t

) (
4 et + e6t

) )(
x1(0)

x2(0)

)

Formula for each state variable (in terms of initial conditions):

x1(t) =
1

5

{(
et +4 e6t

)
x1(0) +

(
− 2 et +2 e6t

)
x2(0)

}

x2(t) =
1

5

{(
− 2 et +2 e6t

)
x1(0) +

(
4 et + e6t

)
x2(0)

}
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Example 2

An electronic control system is described by the following set of
state variable equations:

dx1
dt

= x2,
dx2
dt

= x3,
dx3
dt

=
9

2
x1 −

7

2
x3

We use the process of diagonalisation to obtain the state transition
matrix and hence obtain solutions for x1, x2, x3.
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Example 2 - Solution

First write these three first-order ODEs in the form ẋ = Ax, where:

x =

x1
x2
x3

 , A =

0 1 0
0 0 1
9
2 0 −7

2


and we can obtain the eigenvalues and eigenvectors of A:

λ1 = 1, b1 = α

1
1
1

 ; λ2 = −3, b2 = β

 1
−3
9

 ;

λ3 = −3

2
, b3 = γ

 4
−6
9

 ;

Dr Gavin M Abernethy Lecture 11: Matrix Algebra (4/4)



Example 2 - Solution

Hence, define a modal matrix of A and calculate its inverse:

T =

1 1 4
1 −3 −6
1 9 9

 =⇒ T−1 =
1

60

 27 27 6
−15 5 10
12 −8 −4


We also define the diagonal matrices:

D =

1 0 0
0 −3 0
0 0 −3/2

 and eDt =

et 0 0
0 e−3t 0

0 0 e−3t/2


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Example 2 - Solution

Twice performing matrix multiplication,

eAt = T eDt T−1

=
1

60

1 1 4
1 −3 −6
1 9 9

et 0 0
0 e−3t 0

0 0 e−3t/2

 27 27 6
−15 5 10
12 −8 −4


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Example 2 - Solution

Then the solution is x(t) = eAt x(0), where x(0) =

x1(0)
x2(0)
x3(0)


Hence:

x1(t) =
1

60

{ (
27 et −15 e−3t +48 e−3t/2

)
x1(0) +

(
27 et +5 e−3t −32 e−3t/2

)
x2(0) +

(
6 et +10 e−3t −16 e−3t/2

)
x3(0)

}
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Example 2 - Solution

and similarly:

x2(t) =
1

60

{ (
27 et +45 e−3t −72 e−3t/2

)
x1(0) +(

27 et −15 e−3t +48 e−3t/2
)
x2(0) +(

6 et −30 e−3t +24 e−3t/2
)
x3(0)

}

x3(t) =
1

60

{ (
27 et −135 e−3t +108 e−3t/2

)
x1(0) +(

27 et +45 e−3t −72 e−3t/2
)
x2(0) +(

6 et +90 e−3t −36 e−3t/2
)
x3(0)

}
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Summary

After today, you should be able to . . .

Explain what a modal matrix is, and be able to construct one
from the eigenvectors of a matrix.

Use the diagonalisation method to obtain the state transition
matrix for a system of the form ẋ = Ax.

Determine solutions to the state variables from the state
transition matrix and some initial conditions.

Explain how eigenvalues and eigenvectors have helped us to
predict the behaviour of a circuit from its equations.
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This Week

This week’s lecture corresponds to Section 4.4 of the Course Notes.

Before this week’s tutorial:

Attempt Tutorial sheet 11
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Extra Question - Tutorial Sheet 11, Q1:

The state variable description of a certain electronic system is
ẋ = Ax, where:

x =

(
x1

x2

)
, A =

(
3 3

1 5

)

Use the diagonalisation method to determine the state transition
matrix.

Hence obtain solutions for x1(t) and x2(t).
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