
Further Mathematics, Signals and Systems

Dr Gavin M Abernethy

1



Contents

1 Introduction and Instructions to Students 3
1.1 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Extra reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 So what should I do now? . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Laplace Transforms 5
2.1 Revision: Introduction to Laplace Transforms . . . . . . . . . . . . . . . 6

2.1.1 Definition of Laplace Transform . . . . . . . . . . . . . . . . . . 6
2.1.2 Examples from First Principles . . . . . . . . . . . . . . . . . . . 6
2.1.3 The Linearity Property . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Computational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Discontinuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Applications of U(t) . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Laplace Transforms of Functions with a Delay . . . . . . . . . . . . . . . 20

2.4.1 Method for finding Laplace Transforms of functions with delay . . 21
2.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Example with Multiple Delays . . . . . . . . . . . . . . . . . . . 25

2.5 Inverting Laplace Transforms involving a Delay . . . . . . . . . . . . . . 26
2.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Examples with Multiple Delays . . . . . . . . . . . . . . . . . . . 31

2.6 Computational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Solving Differential and Integral Equations using Laplace Transforms . . 34
2.8 Transfer Functions for Linear Systems . . . . . . . . . . . . . . . . . . . 42
2.9 Amplitude Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Fourier Analysis 55
3.1 Trigonometry and Waveforms . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Plotting Waveforms on a Computer . . . . . . . . . . . . . . . . . . . . 58
3.3 Introduction to Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Theory: Method of Determining the Fourier Series . . . . . . . . 60
3.3.2 Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Special cases of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Odd and Even Functions . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Discontinuities and the Gibbs Phenomenon . . . . . . . . . . . . 66

3.5 Complex Form and Phasors . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Method using Laplace transforms . . . . . . . . . . . . . . . . . . . . . . 69

2



3.7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Use of Fourier Series in Linear Circuit Analysis . . . . . . . . . . . . . . 77
3.8.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Matrices 84
4.1 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . 84
4.1.2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.3 Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.4 Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.5 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.6 The Identity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.7 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Method: Evaluation of Eigenvalues and Eigenvectors . . . . . . . 93
4.2.3 Examples of calculating Eigenvalues and Eigenvectors . . . . . . 94
4.2.4 Calculating using MATLAB . . . . . . . . . . . . . . . . . . . . 99
4.2.5 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 State Variable Description . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.3 Solution of State Variable Equations (without external control) . . 110

4.4 Solving systems of linear first order ODEs . . . . . . . . . . . . . . . . . 111
4.4.1 Method: Solving systems of ODEs using Diagonalisation . . . . . 112
4.4.2 Examples: Solving systems of ODEs using Diagonalisation . . . . 113

5 What do I need to be able to do? 116
5.1 Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 General notes on what will not be tested: . . . . . . . . . . . . . . . . . . 119

6 Appendix 1: Revision 120
6.1 Polynomial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.1 Quadratic functions . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 Complex Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Drawing Waveforms by hand . . . . . . . . . . . . . . . . . . . . . . . . 122

3



7 Appendix 2: Extra Material 124
7.1 Chapter 1: Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.1 Additional Example from First Principles . . . . . . . . . . . . . 125
7.1.2 Existence of the Laplace Transform . . . . . . . . . . . . . . . . . 126
7.1.3 Proof of the Linearity of Laplace Transforms . . . . . . . . . . . . 126
7.1.4 Amplitude Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Chapter 2: Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.2 Convergence of the Fourier Series to the actual function . . . . . . 130
7.2.3 Additional examples using the standard method of integration to

obtain the Fourier Coefficents . . . . . . . . . . . . . . . . . . . . 131
7.2.4 Derivation of the Phasors . . . . . . . . . . . . . . . . . . . . . . 133
7.2.5 Examples of obtaining the Complex Form by Integration . . . . . 134

7.3 Chapter 3: Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.1 Inverse of a 3× 3 Matrix . . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 General Properties of Eigenvalues . . . . . . . . . . . . . . . . . 139
7.3.3 An application of Matrix algebra: Linear stability analysis of sys-

tems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.4 Obtaining the State Transition Matrix . . . . . . . . . . . . . . . 141

4



1 Introduction and Instructions to Students

1.1 Content

This module consists of three main topics in mathematics, that all have some application
to analysing electronic circuits:

• Laplacetransforms. Thesewereintroducedinthefirstyearengineeringmathematics
course.

• Fourier analysis.

• Matrix algebra, eigenvalues and eigenvectors.

Everything you need to know for assessment is included within the lecture slides, this
set of lecture notes, and the tutorial sheets. However, we will not have time to discuss
everything fully in the actual lecture (e.g. working through every example) as we will use
the lectures to carefully understand core concepts. It is both assumed and essential that
students work through the notes and especially the tutorial sheets outside of lectures, and
it is your responsibility to make sure you understand everything. Try to work through the
solutions yourself, and then seek help if you cannot understand the solution.

1.2 Extra reading

Any “engineering mathematics” textbook will cover most of the topics that we will study
in at least as much detail. Most will also include sections on partial fractions and any other
prerequisite mathematical knowledge. Suitable examples that may help you include:

• Engineering Mathematics by Stroud

• Advanced Engineering Mathematics by Kreyszig

• Modern Engineering Mathematics by James

• Advanced Modern Engineering Mathematics by James

• Mathematical Methods for Physics and Engineering by Riley, Hobson and Bence

• Higher Engineering Mathematics by Bird

• National Engineering Mathematics by Yates

In particular, Glyn James’ Advanced Modern Engineering Mathematics very comprehen-
sively explains the ideas studied in this course. I would recommend that you look at this
one if you would like more information on a topic.
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1.3 So what should I do now?

This is quite a lot to take in. To break it down, the best thing you can do each week is:

1. Attend the lecture, and take part in the exercises when prompted.

2. At home, read through the lecture slides again.

3. Then attempt the questions marked “Essential” in that week’s Tutorial Sheet
(I will have highlighted which sheet you should work on at the end of the
lecture).

4. If you are finding the questions difficult, look at the corresponding section in
these course notes to find some additional worked examples to follow along.

5. Then attend your assigned tutorial. Compare your solutions with other stu-
dents, ask the lecturer for help, and perhaps present some of your solutions to
the class if you would like. I will have fully-worked solutions available at the
tutorial.

6. Ifyoustillaren’tsure,ask! Iwantyoutounderstandthismaterialandsucceed!

For revision at the end of the module, there is a revision checklist at the back of these
course notes.
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2 Laplace Transforms

This technique is named after Pierre-Simon Laplace (1749-1827), a French mathemati-
cian. He was mainly concerned with problems in astronomy and statistics, such as celestial
mechanics (planetary motion) which was a scientific problem of very great interest in the
18th century. Laplace’s interests also included the concept of causal determinism, pub-
lishing one of the first papers on the subject, which resulted in “Laplace’s Demon” being
attributed to his ideas. He also taught Napoleon at the military academy, who later tem-
porarily named him Minister of the Interior. The techniques we will use in this course were
mostly developed by Oliver Heaviside, a 19th-20th century English electrical engineer who
was seeking a systematic method of solving ODEs with constant coefficients.

You should remember taking Laplace transforms of simple functions in the first year
Engineering Mathematics course. As before, a formulae sheet is provided with the table
of standard transforms.

The Laplace transform has many uses, but one of the most common is as a tool for solving
sets of ordinary differential equations (ODEs) which describe linear systems, and we will
learn how to do this later in the course.
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2.1 Revision: Introduction to Laplace Transforms

2.1.1 Definition of Laplace Transform

Let f be a function of time, t, that is zero for t < 0.

The Laplace transform of f(t) is denoted L{f(t)} or f̄(s).

The Laplace transform is defined (i.e. we can talk about it) only for t > 0. It is defined
by the integral:

L{f(t)} =

∫ ∞
0

e−stf(t)dt

where e−st is called the kernel of the transformation. When we take the Laplace transform
of f(t) we shift our interest from the time-domain to the s-domain (s is sometimes called
the complex frequency), where certain problems become easier to solve. In particular,
problems involving differential equations can be transformed into something much easier
to manipulate. We can then use the inverse Laplace transform to move back to the time-
domain with the results that we wanted.

2.1.2 Examples from First Principles

Example 2.1. Derive the Laplace transform of

f(t) =

{
0 if t < 0;

1 if t > 0.

Then,

f̄(s) = L{f(t)} =

∫ ∞
0

e−st f(t)dt

=

∫ ∞
0

e−st 1dt =

[
−1

s
e−st

]∞
0

=

{
−1

s
0

}
−
{
−1

s
1

}
provided s > 0

Hence,

f̄(s) =
1

s
for s > 0
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Note that the condition s > 0 is required, as the exponential only e−st only takes a
finite value (zero) as t→∞ if it is a decaying exponential. That is, if−s < 0.

In practice, when determining Laplace transforms, the condition on s for the transform to
be valid can usually be found by looking for any occurences of (s− α) in the denominator
of the transform, and then requiring s > α.

Example 2.2. Derive the Laplace transform of

f(t) =

{
0 for t < 0;

eat for t > 0.

f̄(s) = L{f(t)} =

∫ ∞
0

e−st f(t)dt

=

∫ ∞
0

e−st eat dt =

∫ ∞
0

e−(s−a)t dt

=

[
−1

s− a
e−(s−a)t

]∞
0

=

{
−1

s− a
0

}
−
{
−1

s− a
1

}
provided s > a

Hence,

f̄(s) =
1

s− a
for s > a

In practice, you will be provided with a table of standard Laplace transforms, and will
use those as tools for solving the more complicated problems that we will face. As an
exercise, use the tables to obtain the Laplace transforms of the previosu two examples.

2.1.3 The Linearity Property

For constants a and b, and time-dependent functions f(t) and g(t):

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}

This is called the “linearity” of Laplace transforms, and essentially says that if I want
to take the Laplace transform of two functions that are added together, I can just take the
Laplace transform of each and then add them together. And if I want to take the tranform
of a function that is multipled by a constant, then I can take the transform of my original
function and just multiply it by that constant.

It is very important to realise that this is only for constants. It is not true that the
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Laplace transform of f(t) × g(t) is the same as the transform of f(t) multiplied by the
transform of g(t)!

We can use linearity to obtain the Laplace transform of a complicated-looking function if
it is just a linear combination of terms that we already know the transforms of.

Example 2.3. Using tables, determine the Laplace transform of

x(t) =

{
0 for t < 0;

3t− 2t e−4t for t > 0.

x̄(s) = L{3t− 2t e−4t} = 3L{t} − 2L{t e−4t}

= 3

(
1

s2

)
− 2

(
1

(s+ 4)2

)
=

3(s+ 4)2 − 2s2

s2(s+ 4)2

=
s2 + 24s+ 48

s2(s+ 4)2

for s > 0.

Example 2.4. Using tables, determine the Laplace transform of

v(t) =

{
0 for t < 0;

4 cos(2t) + 5 sin(2t) for t > 0.

v̄(s) = L{4 cos(2t) + 5 sin(2t)} = 4L{cos(2t)}+ 5L{sin(2t)}

= 4
s

s2 + 22
+ 5

2

s2 + 22

=
4s+ 10

s2 + 4

and this is valid for s > 0.
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Example 2.5. Using tables, determine the Laplace transform of

v(t) =

{
0 for t < 0;
E
T

{
t− T + T e−t/T

}
for t > 0

where E and T are positive constants.

v̄(s) = L{v(t)} = L
{
E

T

{
t− T + T e−t/T

}}

=
E

T

(
L{t} − TL{1}+ TL{e−t/T}

)
=
E

T

{
1

s2
− T

s
+ T

1

s+ 1/T

}

=
E

T

{
1

s2
− T

s
+

T 2

sT + 1

}
=
E

T

{
(sT + 1)− sT (sT + 1) + s2T 2

s2(sT + 1)

}

=
E

T

{
sT + 1− s2T 2 − sT + s2T 2

s2(sT + 1)

}
=
E

T

{
1

s2(sT + 1)

}
So we have,

v̄(s) =
E

Ts2(sT + 1)

2.1.4 Inversion

When we have the Laplace transform of a function, say f̄(s), and wish to obtain the corre-
sponding function in the time-domain (i.e f(t)), we need to use the inverse transform. In
the simplest cases, we look up the relevant entry in the Laplace transform tables and work
in the reverse direction.

Remember that the Laplace transform is only defined for functions which are zero when
t < 0, so we have to give our final answer as a piecewise function - meaning that we sepa-
rately write how the function behaves for t > 0 and t < 0. Later on we will see a nicer way
to indicate this by using step functions.

Example 2.6. Invert the Laplace transform

ū(s) =
1

s+ 3

The relevant entry is L−1

{
1

s+α

}
= e−αt with α = 3. Therefore,

u(t) =

{
0 for t < 0;

e−3t for t > 0.

11



Example 2.7. Invert the Laplace transform

x̄(s) =
1

s(s− 5)

The relevant entry is f̄(s) = α
s(s+α)

with α = −5. Therefore,

x(t) =

{
0 for t < 0;

−1
5
(1− e5t) for t > 0.

=

{
0 for t < 0;
1
5
(e5t−1) for t > 0.

Example 2.8. Invert the Laplace transform

v̄(s) =
E

sCR + 1
where E,C,R are positive constants.

The relevant entry is L−1

{
1

1+sT

}
= 1

T
e−t/T with T = CR and scaled by E. Hence,

v(t) = E

(
1

CR
e−t/(CR)

)
=

E

CR
e−t/(CR) for t > 0.

Alternatively, we could have performed some manipulation:

v̄(s) =
E

CR

(
1

s+ (1/CR)

)
and then used the entry for f̄(s) = 1

s+α
with α = 1

CR
.

More complicated examples may first involve using partial fractions or completing
the square. In particular, if we are given an example which has a polynomial on the
denominator, we will try to factorise it and then use partial fractions. If it is a quadratic
function which cannot be factorised, then try completing the square. We will consider
some examples of this next.

Example 2.9 (Completing the Square). Invert the Laplace transform

ȳ(s) =
2s+ 7

s2 + 6s+ 34

The denominator s2 + 6s + 34 cannot be factorised neatly, so we complete the square

and then separate the numerator:

ȳ(s) =
2s+ 7

(s+ 3)2 + 52
=

2s

(s+ 3)2 + 52
+

7

(s+ 3)2 + 52
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Then we use the inverse transforms for s
(s+α)2+ω2 and ω

(s+α)2+ω2 with α = 3 and ω = 5,

and scale them appropriately to obtain:

y(t) = 2 e−3t

{
cos(5t)− 3

5
sin(5t)

}
+ 7

1

5
e−3t sin(5t)

= e−3t

{
2 cos(5t) +

1

5
sin(5t)

}
for t > 0

Alternatively, we could have put the transform in the form:

ȳ(s) =
2(s+ 3)

(s+ 3)2 + 52
+

1

(s+ 3)2 + 52

and used the inverse transforms for s+α
(s+α)2+ω2 and ω

(s+α)2+ω2 to obtain the same result.

Example 2.10. Invert the Laplace transform

v̄(s) =
s

s2 + 4s+ 13

The denominator s2 + 4s+ 13 doesn’t factorise, so completing the square:

v̄(s) =
s

(s+ 2)2 − 22 + 13
=

s

(s+ 2)2 + 32

Then using the inverse transform L−1

{
s

(s+α)2+ω2

}
= e−αt

(
cos(ωt)− α

ω
sin(ωt)

)
with

α = 2 and ω = 3 we obtain:

v(t) = e−2t

(
cos(3t)− 2

3
sin(3t)

)
for t > 0

Example 2.11. Invert the Laplace transform

x̄(s) =
7

s2 + 2s+ 17

The denominator s2 + 2s+ 17 doesn’t have an integer factorisation, so completing the

square:

x̄(s) =
7

(s+ 1)2 − 12 + 17
=

7

4

(
4

(s+ 1)2 + 42

)
Then using the inverse transform L−1

{
ω

(s+α)2+ω2

}
= e−αt sin(ωt) with α = 1 and ω = 4

we obtain:

x(t) =
7

4
e−t sin(4t) for t > 0
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Example 2.12. Invert the Laplace transform

q̄(s) =
5

(s+ 2)(s2 + 32)

Now, this appears to be similar in form to the entry

α2 + ω2

(s+ α)(s2 + ω2)

with α = 2 and ω = 3, but some manipulation is required to put it exactly in that form.

α2 + ω2 = 22 + 32 = 13, but we have only 5 on the numerator, so:

q̄(s) =
5

13

(
13

(s+ 2)(s2 + 32)

)
=

5

13

(
22 + 32

(s+ 2)(s2 + 32)

)
Hence,

q(t) =
5

13

{
e−2t +

2

3
sin(3t)− cos(3t)

}

=
5

39

{
3 e−2t +2 sin(3t)− 3 cos(3t)

}
for t > 0.

For more difficult cases, we may be able to obtain the partial fractions expansion of the
Laplace transform and then invert the individual partial fractions.

Example 2.13 (Partial Fractions). Invert the Laplace transform

f̄(s) =
1

s(sCR + 1)

where C,R are positive constants.

First we use use partial fractions:

1

s(sCR + 1)
=
A

s
+

B

sCR + 1

Cross-multiplying,

1 = A(sCR + 1) +Bs

14



Choosing s = 0 reduces the equation to A = 1, and then choosing s = −1/CR, we

obtain:

1 =
−1

CR
B =⇒ B = −CR

Hence, the transformed function is equivalent to:

f̄(s) =
1

s
− CR

sCR + 1

Then we can obtain the inverse Laplace transform of each term:

f(t) = L−1

{
1

s
− CR

sCR + 1

}

= L−1

{
1

s

}
− L−1

{
1

sCR + 1

}

= 1− CR 1

CR
e−t/CR

= 1− e−t/CR

Example 2.14. Invert the Laplace transform

v̄(s) =
E(4sCR + 3)

s(sCR + 2)(sCR + 5)

As usual, assume that C,R are positive constants and t is the time variable.

Using partial fractions,

(4sCR + 3)

s(sCR + 2)(sCR + 5)
=
A

s
+

B

sCR + 2
+

C

sCR + 5

and we obtain A = 3
10

, B = 5CR
6

, and C = −17CR
15

. Hence,

v̄(s) = E

{
3

10s
+

5CR

6(sCR + 2)
− 17CR

15(sCR + 5)

}
and so inverting each term gives:

v(t) = E

{
3

10
+

5

6
e−2t/(CR)−17

15
e−5t/(CR)

}

=
E

30

{
9 + 25 e−2t/(CR)−34 e−5t/(CR)

}
for t > 0.
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Example 2.15. Invert the Laplace transform:

ḡ(s) =
E(sCR + 1)

s(sCR + 2)2

Using partial fraction expansion:

E(sCR + 1)

s(sCR + 2)2
=
A

s
+

B

sCR + 2
+

D

(sCR + 2)2

E(sCR + 1) = A(sCR + 2)2 +Bs(sCR + 2) +Ds

Choosing s = 0 yields E = 4A, and so A = E/4. Setting s = −2/CR results in

D = ECR/2. We could choose another value of s and solve for B, or by equating the

coefficients of s2 find that 0 = C2R2A + CRB and so using our result for A obtain

B = (−ECR)/4. Hence,

ḡ(s) =

(
E

4

)
1

s
+

(
−E
4

)
1

s+ (2/CR)
+

(
E

2CR

)
1

(s+ (2/CR))2

and so inverting,

g(t) =
E

4
− E

4
e−2t/CR +

E

2CR
t e−2t/CR

=
E

4CR

{
CR + (2t− CR) e−2t/CR

}
for t > 0, and zero otherwise.
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2.2 Computational Approach

In MATLAB, taking the Laplace transform of a function is straightforward. You need to
have the Symbolic Math Toolbox installed. Then declare the symbolic variable (let’s say
t) and define the symbolic function f :

syms t;

f(t) = 5*t*exp(t);

laplace(f);

Similarly, to determine the inverse Laplace transform of a function F (s):

syms s;

F(s) = 1/s^2;

ilaplace(F);

Use this to check your answers.
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2.3 Discontinuous Functions

Generally speaking, a function f(x) is discontinuous at a point x0 if there is a break in the
graph of the function at that point. For example, y = 1

x
is discontinuous at x = 0, and

y = tan(x) is discontinuous at infinitely many points (π
2

+ nπ for all integers n).

(a) y = 1
x (b) y = tan(x)

Figure 1: Examples of functions with a discontinuity

An important class of functions with a discontinuity are called “step functions”.

Figure 2: Heaviside’s Unit function

In particular, the Unit Step Function, or Heaviside’s unit function, U(t) (although
note that some texts may useH(t)), has a discontinuity at t = 0:

18



U(t) =

{
0 if t < 0;
1 if t > 0.

For our purposes, it will not be necessary to define U(0), although some textbooks
use U(0) = 1. Combining U(t) with other functions acts as a “switching function” that
switches on at t = 0. We will use it instead of explicitly refering to the domain of t.

Example 2.16. For example, instead of writing:

v(t) =

{
0 if t < 0;

e−3t(2cos(5t) + 1
5
sin(5t)) if t > 0.

we can now just use:

v(t) = e−3t(2 cos(5t) +
1

5
sin(5t))U(t)

to indicate that the function “switches on” at time t = 0.

Recall that we previously said that Laplace transforms are defined for functions that
are zero for t < 0, and thus when obtaining an inverse Laplace transform we usually state
“valid for t > 0”. From here, instead of writing this condition, instead when we obtain the
inverse transform of any function f̄(s) without time-delay (see later in this section!) we
multiply the final answer f(t) by U(t) to indicate that it starts at t = 0.

Example 2.17. Find the Laplace transform of f(t) = 3tU(t)

This is the same as finding the Laplace transform of

f(t) =

{
0 if t < 0;

3t if t > 0.

And so just as before,

f̄(s) = L
{

3tU(t)
}

= L
{

3t
}

= 3
1

s2

valid for s > 0.
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We can generalise the step function to switch on at time t = a:

U(t− a) =

{
0 if t < a;
1 if t > a.

and the usual function transformations apply. For example,

3U(t− a) =

{
0 if t < a;
3 if t > a.

This would represent a step up of size 3 at time a, while−5U(t− a) indicates a step down
of 5 at time t = a.

(a) y = 3U(t− a) (b) y = −5U(t− a)

2.3.1 Applications of U(t)

1. A constant e.m.f. of valueE is applied to a circuit starting at time t = 0:

e(t) = EU(t)

2. We can combine multiple step functions to switch a function on for an interval, and
then off again. For example, a constant force P is applied for the first T time units:

p(t) = PU(t)− PU(t− T ) = P (U(t)− U(t− T ))

Step up at t = 0 and then step down after time T .
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3. Similarly, f(t) = 3U(t − 2) − 3U(t − 5) = 3

(
U(t − 2) − U(t − 5)

)
describes a

signal of constant strength 3 that begins at time t = 2 and ends at time t = 5.

4. A capacitor is charged from the discharged state through a resistor for a time T by
a constant DC voltage supply:

i(t) =
E

R
e−t/CR(U(t)− U(t− T ))

5. It doesn’t just have to be constant functions. We can combine step functions to
switch on and off functions with any general behaviour. This will be used later in the
course to describe piecewise functions (functions that obey certain behaviour for a
period, and then change to a different kind of behaviour).

Consider a function f that is behaves like f1 for the interval [0, T1], but then changes
to act like f2 during the next interval [T1, T2] before switching off. This is described
by:

f(t) = f1(t)

(
U(t)− U(t− T1)

)
+ f2(t)

(
U(t− T1)− U(t− T2)

)
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2.4 Laplace Transforms of Functions with a Delay

Note from the Laplace transform tables that there are transforms given for step functions.
In particular,

L{U(t)} =
1

s
and L{U(t− T )} =

e−sT

s

So for example, L{5U(t− 3)} = 51
s

e−3s.

Next, we will learn how to take Laplace transforms of more complicated functions in-
volving a time-shifted step function.

In order to take the Laplace transform of a function with a delay, we need to re-write
it into a specific “delay form”. This means manipulating it into a function of the time
with delay, usually g(t − T ), so that a substitution can be made between real time and a
time-delayed variable. This is best explained by an example:

f(t) = tU(t− 2) NOT delay form.

= ((t− 2) + 2)U(t− 2) In delay form.

Once we have put the delayed equation into Delay Form, there is a special transform for
that which we can use, known as the Heaviside or delay theorem:

L{g(t− T )U(t− T )} = e−sTL{g(t)}

If you have an equation with a time delay, you must ensure that it is in Delay Form
before this transformation can be applied.

This theorem is the first really substantial new piece of content in this course. You
must know and be able to use the delay theorem!

As an immediate consequence of this theorem, we can derive the theoremL{U(t− T )} =
e−sT

s
above.

22



2.4.1 Method for finding Laplace Transforms of functions with delay

Let us work through a procedure for an example, f(t) = 3tU(t− 2):

1. First, we look at the step function U(t− 2) to identify the delay is of value 2.

2. Then we consider the other part of the term (i.e. what is multiplied by this step
function), which in this case is 3t. Let’s call this part the function g(t− 2). Thus,

g(t− 2) = 3t

If all occurences of t in this part are written explicitly as t− 2 then we already have
delay form and can skip the Step 3.

Note: you can call it h(t − 2), v(t − 2), etc. if you wish. All that matters is
that we do not choose a name that is already being used in the question, which in
this case would just be f and U .

3. In this case, g(t− 2) is not already written in delay form. However, we can remedy
this by replacing all the instances of twith

(
(t− 2) + 2

)
. Hence in this case we get:

g(t− 2) = 3
(
(t− 2) + 2

)
= 3(t− 2) + 6

This is now in Delay Form!

4. Once g(t − 2) is in delay form, we obtain g(t) by replacing all instances of (t − 2)
with t. That is, we are changing the input for the function g, and so it performs the
same set of transformations to t instead of to t− 2. Thus we find:

g(t) = 3t+ 6

5. Finally, the Delay Theorem says that we take the Laplace transform of g(t) (that we
have finally obtained in the previous step), and multiply by e−s×delay. Thus we have:

f̄(s) = L
{

3tU(t− 2)
}

This is the problem.

= L
{
g(t− 2)U(t− 2)

}
Naming the other part in Step 2.

= L
{
g(t)

}
e−2s According to the delay theorem.

= L
{

3t+ 6
}

e−2s Determined in Step 4.

=

(
3

s2
+

6

s

)
e−2s Using the transform tables.

=
3

s2

(
1 + 2s

)
e−2s Simplifying.
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2.4.2 Examples

Example 2.18. Find the Laplace Transform of:

f(t) = 3t2U(t− 1)

First we identify from the step function U(t − 1) that this function has a delay of

value 1.

Thus we name the other parts of the term g(t− 1):

g(t− 1) = 3t2

This is not in delay form, as there is a t that is not written as t− 1. So we will replace

this t with
(
(t− 1) + 1

)
:

g(t− 1) = 3
(
(t− 1) + 1

)2

= 3

(
(t− 1)2 + 2(t− 1) + 1

)
= 3(t− 1)2 + 6(t− 1) + 3

This is now in delay form.

Now, the Delay Theorem says that I need to take the transform of g(t), not g(t − 1).

So I replace t− 1 with t to obtain g(t):

g(t) = 3t2 + 6t+ 3

(The purpose of delay form is to make this step a straight swap!)

So now we take Laplace Transforms of g(t):

L
{
g(t)

}
= L

{
3t2 + 6t+ 3

}
= 3L

{
t2
}

+ 6L
{
t
}

+ 3L
{

1
}

= 3

(
2!

s3

)
+ 6

(
1

s2

)
+ 3

(
1

s

)
=

3

s3

(
2 + 2s+ s2

)
Then the Delay Theorem tells us that the final answer is f̄(s) = L

{
g(t)

}
e−1s =

L
{
g(t)

}
e−s since the delay has value of 1:

f̄(s) =
3

s3

(
2 + 2s+ s2

)
e−s
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Example 2.19. Given

f(t) = (t− 4)U(t− 4)

This is already in delay form, so declare g(t− 4) = t− 4, then g(t) = t. Since

ḡ(s) = L{t} =
1

s2
,

then by the delay theorem we have:

f̄(s) = L{(t− 4)U(t− 4)} = L
{
t
}
× e−4s =

1

s2
e−4s

Example 2.20. Find the Laplace transform of:

f(t) = e−a(t−5T ) U(t− 5T ).

From the step function U(t− 5T ), we can see that the delay is of size 5T .

Let’s first declare g(t − 5T ) = e−a(t−5T ). This is already in delay form, so we can

immediately replace t− 5T with t and obtain g(t):

g(t) = e−at

Using the result L{e−at} = 1
s+a

from the tables, then according to the delay theorem:

f̄(s) = L{e−a(t−5T ) U(t− 5T )} = L
{

e−at
}
× e−5Ts =

e−5Ts

s+ a

These two examples were already given to us in delay form. However, the following
examples are not yet in delay form and so will need to be manipulated first:

Example 2.21. Given

f(t) = (3t+ 1)U(t− 2)

Then we restate the problem in the form f(t) = g(t− 2)U(t− 2), and so:

g(t− 2) = 3t+ 1
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Since this involves a t and not explicitly t− 2, this is not in delay form. Therefore, we

rearrange:

g(t− 2) = 3
(
(t− 2) + 2

)
+ 1 = 3(t− 2) + 7

Using the delay theorem, we require ḡ(s), which is the Laplace transform of g(t):

g(t) = 3t+ 7

∴ ḡ(s) = L
{

3t+ 7
}

= 3L{t}+ 7L{1} =
3

s2
+

7

s

And the delay form tells us that the solution is f̄(s) = ḡ(s) e−2s, hence:

f̄(s) =

(
3

s2
+

7

s

)
e−2s =

e−2s

s2
(3 + 7s)

Example 2.22. Obtain the Laplace transform of

v(t) = E e−t/CR U(t− 2T ) where E,C,R, T are constants.

Writing in delay form:

v(t) = E e−
(

(t−2T )+2T
)
/CR U(t− 2T )

So v(t) = f(t− 2T )U(t− 2T ), where

f(t) = E e−(t+2T )/CR = E e−2T/CR e−t/CR

Obtaining the Laplace transform of this:

f̄(s) = E e−2T/CR 1

s+ 1/CR
= ECR e−2T/CR 1

sCR + 1

and so we have

v̄(s) =
ECR

sCR + 1
e−2T/CR e−2Ts =

ECR

sCR + 1
e−2T (s+1/CR)

Note: Remember that if the step function is just U(t) then there is no time-delay
and we do not need to use the delay theorem!
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2.4.3 Example with Multiple Delays

Example 2.23. Find the Laplace transform of the following function:

f(t) = 5t
(
U(t− 2)− 3U(t− 5)

)
Since this function contains multiple delays, we will need to expand the brackets and

treat each delay separately - putting the bits multiplied by each step function into the

corresponding delay form:

f(t) = 5t
(
U(t− 2)− 3U(t− 5)

)
= 5tU(t− 2)− 15tU(t− 5)

= 5
(
(t− 2) + 2

)
U(t− 2)− 15

(
(t− 5) + 5

)
U(t− 5)

Now we are ready to take the Laplace Transform by applying the delay theorem twice:

f̄(s) = L
{(

(t− 2) + 2
)
U(t− 2)− 15

(
(t− 5) + 5

)
U(t− 5)

}

= 5L
{(

(t− 2) + 2
)
U(t− 2)

}
− 15L

{(
(t− 5) + 5

)
U(t− 5)

}
= 5L

{
t+ 2

}
e−2s−15L

{
t+ 5

}
e−5s by two applications of the delay theorem

= 5

(
1

s2
+

2

s

)
e−2s−15

(
1

s2
+

5

s

)
e−5s

=
5

s2

((
1 + 2s

)
e−2s−3

(
1 + 5s

)
e−5s

)
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2.5 Inverting Laplace Transforms involving a Delay

If a term in a Laplace transformation includes a factor of the form e−sT then you know that
the inverse will involve a delay of T time units.
In this case we will effectively reverse the delay theorem and then apply it:

L−1{e−sT f̄(s)} = f(t− T )U(t− T ).

2.5.1 Method

Let us follow a procedure to invert the following time-delayed function:

v̄(s) =
2 e−7s

s+ 3

1. Identify a factor of e−sT , where T is any constant (it could be a number like 3, 5, 97,
etc. or it could be symbolic like T , 3T , 40T , 5kT etc.).This means that there will be
a delay of time T.

In this example the presence of e−7s indicates that there will be a delay of 7.

2. Next we ask what is multiplied by the exponential e−sT ?
In particular, we need to identify f̄(s), where:

v̄(s) = f̄(s)e−sT

If there are multiple exponentials, and thus a variety of different time-delays, split
the function up and consider each time-delay separately.

In the case of the example v̄(s), we have:

f̄(s) =
2

s+ 3

3. This is the function that we need to find the Inverse Laplace Transform of initially:

f(t) = L−1
{
f̄(s)

}
This step often involves using either partial fractions or completing the square.

In this example,

f(t) = L−1

{
2

s+ 3

}
= 2L−1

{
1

s+ 3

}
= 2 e−3t from the transform tables.
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4. Change the variable from t to t−T , and so replace every occurrence of t in f(t) with
t− T . This gives us the function f(t− T ).

Hence for this example, which has delay 7, we need to replace every occurence of
t in f(t) with t− 7 and thus obtain f(t− 7):

f(t− 7) = 2 e−3(t−7)

5. Finally, multiply by the step function U(t− T ), to give v(t) = f(t− T )U(t− T ) as
in the formula above.

So for the example we multiply f(t− 7) by U(t− 7) to obtain the final answer:

v(t) = L−1

{
2 e−7s

s+ 3

}
= 2 e−3(t−7) U

(
t− 7

)
A summary of the method is as follows:

1. Identify a factor of e−sT . This means that there will be a delay of T. Identify f̄(s),
where v̄(s) = f̄(s)e−sT .

2. Invert this part to obtain f(t) = L−1
{
f̄(s)

}
.

3. Change the variable from t to t−T , and so replace every occurrence of t in f(t) with
t− T . This gives us f(t− T ).

4. Finally, multiply by the step function U(t− T ), to give v(t) = f(t− T )U(t− T ) as
in the formula above.

2.5.2 Examples

Example 2.24. Find the inverse Laplace Transform of:

f̄(s) =
1

s+ 2
e−2sT

First we identify from the exponential function involving s (i.e. the e−2sT ) that the

final answer will involve a delay of 2T as that is what is multiplied by −s in the power.

Thus we name the other part of the term (i.e. what is multiplied by this exponen-

tial) ḡ(s):

ḡ(s) =
1

s+ 2
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and we obtain the inverse of this to obtain:

g(t) = L−1
{
ḡ(s)

}
= L−1

{
1

s+ 2

}
= e−2t from the tables.

However, the inverse delay theorem says that our solution will involve g(t−2T ), rather

than g(t), so we find this by replacing t with t− 2T :

g(t− 2T ) = e−2(t−2T )

Finally, we need to multiply g(t−2T ) by a step function with the same delay, so multiply

by U(t− 2T ) to obtain the final answer:

f(t) = e−2(t−2T ) U(t− 2T )

Example 2.25. Given

v̄(s) =
s

s2 + ω2
e−3s,

then the factor e−3s means that v(t) involves a delay of 3 units.

Then we separately consider the other factor is f̄(s) = s
s2+ω2 , which we see from the

tables inverts to f(t) = cos(ωt). Hence,

v(t) = cos(ω(t− 3))U(t− 3)

Example 2.26. Given

ī(s) =
2 e−s

s+ 3
,

then the factor e−s means that i(t) involves a delay of 1.

The other factor is f̄(s) = 2
s+3

= 2

(
1
s+3

)
, which inverts to f(t) = 2 e−3t.

Therefore we have,

i(t) = 2 e−3(t−1) U(t− 1)
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Example 2.27. Given

q̄(s) =
Qα e−sT

s(s+ α)
,

then the factor e−sT means that q(t) involves a delay of T .

The other factor is f̄(s) = Qα
s(s+α)

= Q

(
α

s(s+α)

)
, which (either from the tables, or using

partial fractions first) inverts to f(t) = Q
(
1− e−αt

)
. Therefore,

q(t) = Q
(
1− e−α(t−T )

)
U(t− T )

Example 2.28. Given

v̄(s) =
E(s2 + (sT + 1)ω2)

Ts2(s2 + ω2)
e−sT

Then there will be a delay of time T involved because of the term e−sT , and the other

factor is:

f̄(s) =
E

T

(
s2 + (sT + 1)ω2

s2(s2 + ω2)

)
Using the methods of partial fractions (and ignoring the factor E

T
for the time being),

s2 + (sT + 1)ω2

s2(s2 + ω2)
=
A

s
+
B

s2
+
Cs+D

s2 + ω2

and so multiplying both sides by the denominator gives:

s2 + (sT + 1)ω2 = As(s2 + ω2) +B(s2 + ω2) + (Cs+D)s2

Now we need to find A,B,C,D. We could do this by choosing various values of s and

obtaining simultaneous equations to solve, but in this particular case it is easier to use

the method of equating the coefficients of the different powers of s (so consider s3, s2,

etc.):

s3 : 0 = A+ C

s2 : 1 = B +D

s1 : Tω2 = Aω2 =⇒ A = T

s0(i.e.constants) : ω2 = ω2B =⇒ B = 1
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Hence we have A = T , B = 1, C = −T and D = 0. Therefore,

f̄(s) =
E

T

{
T

s
+

1

s2
− sT

s2 + ω2

}
Inverting each of these terms, and bringing back the factor E

T
:

f(t) =
E

T

{
T + t− T cos(ωt)

}
So using the inversion formula L−1{e−sT f̄(s)} = f(t − T )U(t − T ), we substitute in

t→ t− T and multiply by the step function U(t− T ) to obtain the final answer:

v(t) =
E

T

{
T + (t− T )− T cos

(
ω(t− T )

)}
U(t− T )

=
E

T

{
t− T cos

(
ω(t− T )

)}
U(t− T )

= E

{
t

T
− cos

(
ω(t− T )

)}
U(t− T )
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2.5.3 Examples with Multiple Delays

Example 2.29. Determine the inverse Laplace transform of:

f̄(s) =
3 e−2s +2s e−3s

s2

Expanding this fraction,

f̄(s) =
3

s2
e−2s +

2s

s2
e−3s

= 3
1

s2
e−2s +2

1

s
e−3s

we can see that the two time-delay exponentials are multiplied by fundamentally differ-

ent functions: 1
s2

and 1
s
. Because of this, we will have to treat the two delays separately,

and apply the inverse delay theorem twice.

Let’s name what is multiplied by the first exponential ḡ1(s), and what is multiplied

by the second exponential ḡ2(s):

ḡ1(s) =
3

s2
, ḡ2(s) =

2

s

Then taking the inverse Laplace transform of each of these:

g1(t) = L−1

{
3

s2

}
= 3L−1

{
1

s2

}
= 3t

g2(t) = L−1

{
2

s

}
= 2L−1

{
1

s

}
= 2× 1 = 2

And finally we apply the inverse delay theorem to each of the two delayed terms (re-

placing t with t− 2 or t− 3 and multiplying by the corresponding step function):

f(t) = g1(t− 2)U(t− 2) + g2(t− 3)U(t− 3)

So the solution is:

f(t) = 3(t− 2)U(t− 2) + 2U(t− 3)
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Example 2.30. Determine the inverse Laplace transform of:

f̄(s) =
3 e−2s + e−3s

s+ 1

If we write this as

f̄(s) =
1

s+ 1

(
3 e−2s + e−3s

)
we can see that the two different time-delay exponentials are multiplied by effectively

the same function in terms of s (the constant 3 does not change the form of what is

multiplied by the first exponential).

This means that we can take a shortcut. Let’s call the shared part of the term without

the exponentials ḡ(s):

ḡ(s) =
1

s+ 1

So now the problem looks like:

f̄(s) = 3ḡ(s) e−2s +ḡ(s) e−3s

Then the inverse Laplace transform of ḡ(s) is:

g(t) = L−1

{
1

s+ 1

}
= e−t

Finally we treat the two different time delays separately, and apply the inverse delay

theorem to each (replacing t with t − 2 or t − 3 and multiplying by the corresponding

step function):

f(t) = 3 e−(t−2) U(t− 2) + e−(t−3) U(t− 3)
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2.6 Computational Approach

To manipulate functions involving a delay in MATLAB, we need to invoke the Heaviside
command. For example, to obtain the transform of f(t) = (3t+ 1)U(t) + 17t2U(t− 5T ):

syms t T;

assume(T > 0);

H1=heaviside(t);

H2=heaviside(t-5*T);

laplace((3*t+1)*H1+17*t.^2*H2)
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2.7 Solving Differential and Integral Equations using Laplace

Transforms

We are building up to the objective of using Laplace transforms to solve systems of equa-
tions that could model an electronic circuit. The formulae for calculating potential differ-
ences relating to certain electronic components are described in the box.

Modelling linear electronic components:

• Capacitor with capacitanceC and current i passing through it:

Potential difference =
1

C

∫ t

0

idt+ initial p.d.

• Resistor with resistanceR and current i passing through it:

Potential difference = iR.

• Inductor with inductance L and current i passing through it:

Potential difference = Ldi
dt

Several of these involve derivatives or integrals. Therefore, if we are analysing the
equations that arise from circuits containing these components, we will need to know how
to take the Laplace transforms of the derivatives or integrals of time-dependent variables.

First, let’s consider how to take the Laplace transform of the first derivative of a func-
tion. From first principles:

L
{
dx

dt

}
=

∫ ∞
0

e−st
dx

dt
dt = [e−stx(t)]∞0 + s

∫ ∞
0

e−stx(t)dt = 0− x(0) + sx̄(s)

Here we use a integration by parts and assume that e−stx(t) → 0 as s → ∞, which will
certainly be true for any finite-valued function x(t).

Therefore we have the formula,

L{ẋ} = L
{
dx

dt

}
= sx̄(s)− x(0)

Repeated application of integration by parts, combined with a proof by induction,
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yieldsthemoregeneral formulafortheLaplacetransformofthenthderivativeofa function:

L
{
dnx

dtn

}
= snx̄(s)− sn−1x(0)− sn−2dx

dt

∣∣∣∣
t=0

− sn−3d
2x

dt2

∣∣∣∣
t=0

− · · · − dn−1x

dtn−1

∣∣∣∣
t=0

= snx̄(s)−
n−1∑
k=0

s(n−1)−k d
kx

dtk

∣∣∣∣
t=0

In particular, n = 2 gives the Laplace transform of a second-derivative of a function:

L
{
d2x

dt2

}
= s2x̄(s)− sx(0)− ẋ(0)

Now let’s try to find the transform of the integral of a function. Let

z(t) =

∫ t

0

x(t)dt

Then clearly z(0) = 0 as it is an integral over zero range. By definition,

dz

dt
= x(t)

so we can use the result for the Laplace transform of a derivative to obtain:

x̄(s) = sz̄(s)− z(0) = sz̄(s)− 0

Therefore we have the formula:

L
{∫ t

0

x(t)dt

}
=
x̄(s)

s

As usual, these results are given in the provided table of Laplace transforms.

When we first introduced Laplace transforms, a motivating factor was that we can move
our problem into the complex frequency domain where they become much easier to solve.
That is what we will be doing now. Consider the diagram:
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We will begin to apply what we have learned about using Laplace transforms to analyse
electronic circuits using this sort of procedure. In general, we will be given a problem in
the time-domain that consists of a set of equations involving an input, an output, and
possibly some-other time-dependent variables. The general idea displayed in the diagram
is that first we will take Laplace transforms of each equation to obtain a statement of the
problem in the s-domain. Then we will “solve” the problem in this domain by rearranging
and substituting the equations in order to obtain an equation for the transform of the
ouput solely in terms of the transform of the input (with all other s-dependent variables
eliminated). Finally, we may be given a specific input function. We obtain its Laplace
transform, subsititute this into the equation for the system that we have obtained in order
to get the transform of the output corresponding to this specific input, and finally perform
the inverseLaplace transform toobtain theoutput in the time-domain - this is the solution.

Example 2.31. A series circuit consisting of an AC voltage source with voltage e(t),

a resistor of resistance R, and a capacitor with capacitance C has current i.

Consider the potential differences in the circuit:

e(t) = Ri+
1

C

∫ t

0

idt,
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where v(t) = 1
C

∫ t
0
idt is the potential difference across the capacitor. Say we wish to

find the output v(t), given an input voltage e(t). This can be done by taking Laplace

transforms. First, we need to find ī(s):

e(t) = Ri+
1

C

∫ t

0

idt

∴ ē(s) = Rī(s) +
1

Cs
ī(s)

= ī(s)
(
R +

1

Cs

)
∴ ī(s) =

ē(s)

R + 1
Cs

Then we can find v̄(s) in terms of both ē(s) and ī(s), and make a substitution to obtain

v̄(s) solely in terms of ē(s) (i.e., output voltage as a function of input voltage):

e(t) = Ri+ v(t)

∴ ē(s) = Rī(s) + v̄(s)

= R
ē(s)

R + 1
Cs

+ v̄(s).

∴ v̄(s) = ē(s)
(
1− R

R + 1/Cs

)
= ē(s)

1

1 + CRs
.

Now, let us determine the output voltage v(t) given the following inputs:

i) e(t) = EU(t)

ii) e(t) = EU(t− T )

iii) e(t) = Et
T

(U(t)− U(t− T )).

Solutions:

i) ē(s) = E
s

, so we have:

v̄(s) =
E

s(1 + CRs)
=

E/CR

s(1 + 1/CR)
.
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and inverting this using L
{

α
s(1+α)

}
= 1− e−αt from the transform tables:

v(t) = E(1− e−t/CR)U(t).

ii) ē(s) = E
s
e−sT , so we have:

v̄(s) = e−sT
E

s(1 + CRs)

Inverting using the result of (i) and the delay transform theorem,

v(t) = U(t− T )E(1− e−(t−T )/CR),

so we see that a delayed input e(t) has resulted in a delayed output v(t).

iii) e(t) = E
T

(tU(t)− ((t− T ) + T )U(t− T )), and so

ē(s) =
E

T
(

1

s2
− e−sT (

1

s2
+
T

s
)) =

E

Ts2
(1− (1 + sT )e−sT )

Therefore

v̄(s) =
E

(1 + CRs)Ts2
(1− (1 + sT )e−sT ).

To carry out the inversion, we need to split the terms up, separating by the presence

or absence of delay, and the order of s:

v̄(s) =
E

T

{
1

s2(sCR + 1)
− e−sT

s2(sCR + 1)
− Te−sT

s(sCR + 1)

}
Consider the first term inside the bracket (remember E and T are constants). Using

partial fractions, we obtain:

1

s2(sCR + 1)
=
−CR
s

+
1

s2
+

C2R2

CRs+ 1

so applying the inversion to each fraction yields the following:

L−1{ 1

s2(sCR + 1)
} = U(t)(−CR + t+ CRe−t/CR)

Since the second term is just a time-delayed version of the first, we can use the inverse

delay transform to immediately obtain:

L−1{e−sT 1

s2(sCR + 1)
} = U(t− T )

(
− CR + (t− T ) + CRe−(t−T )/CR

)
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For the third term, applying partial fractions to the non-time delayed part gives us:

1

s(sCR + 1)
=

1

s
− CR

CRs+ 1

Therefore

L−1

{
1

s(sCR + 1)

}
= tU(t)− CR

CR
e−t/CRU(t) = U(t)(1− e−t/CR)

and so the time-delayed version will give:

L−1

{
Te−sT

s(sCR + 1)

}
= TU(t− T )

(
1− e−(t−T )/CR

)
Putting it all together and gathering the step functions, we have the final result:

v(t) =
E

T

{
U(t)

(
t−CR+CRe−t/CR

)
−U(t−T )

(
t−CR+ (CR−T )e−(t−T )/CR

)}
.

Example 2.32. Consider a system with input f(t) and output x(t), that satisfies the

following:

d2x

dt2
+ 3

dx

dt
+ 2x = f(t)

with initial conditions x(0) = 0 and ẋ(0) = 1. Using Laplace transforms, determine

x(t) when f(t) = U(t− 3).

Taking Laplace transforms of both sides of the equation:

f̄(s) = L
{
d2x

dt2
+ 3

dx

dt
+ 2x

}

= L
{
d2x

dt2

}
+ 3L

{
dx

dt

}
+ 2L{x} by linearity,

= (s2x̄(s)− sx(0)− ẋ(0)) + 3(sx̄(s)− x(0)) + 2x̄(s)

= s2x̄(s)− 0− 1 + 3(sx̄(s)− 0) + 2x̄(s)

= s2x̄(s)− 1 + 3sx̄(s) + 2x̄(s)

= x̄(s)(s2 + 3s+ 2)− 1
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Rearranging, we obtain the transform of the output x̄(s) in terms of the transform of

the input f̄(s):

x̄(s) =
f̄(s) + 1

s2 + 3s+ 2

Then given the specific input f(t):

f(t) = U(t− 3) =⇒ f̄(s) =
e−3s

s

and we substitute this into our equation for x̄(s):

x̄(s) =
1 + e−3s/s

s2 + 3s+ 2
=

e−3s

s(s+ 1)(s+ 2)
+

1

(s+ 1)(s+ 2)

Finally, we want to invert this to obtain the output x(t) in the time-domain. Now, there

are two terms here that we will have to treat separately when inverting, because one of

them has a time delay (because of the e−3s) and the other does not. In particular,

x(t) = L−1

{
e−3s

s(s+ 1)(s+ 2)

}
+ L−1

{
1

(s+ 1)(s+ 2)

}
For the first term, with time-delay, we need to find the inverse of the non-time-delayed

part of that term. That is, we need to find the inverse Laplace transform of 1
s(s+1)(s+2)

for the first term. Using partial fractions expansion, we find that:

1

s(s+ 1)(s+ 2)
=

1

2s
+
−1

s+ 1
+

1

2(s+ 2)

1

s(s+ 1)(s+ 2)
=

1

s+ 1
+
−1

s+ 2

Hence,

x̄(s) = e−3s

(
1

2s
+
−1

s+ 1
+

1

2(s+ 2)

)
+

(
1

s+ 1
+
−1

s+ 2

)
Inverting the non-time-delayed part of the first term:

L−1

{
1

s(s+ 1)(s+ 2)

}
= L−1

{
1

2s
+
−1

s+ 1
+

1

2(s+ 2)

}

=
1

2
− e−t +

e−2t

2
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and so using the inverse delay theorem with a delay of 3 means that we swap t for t−3,

and then multiply by the delayed step function U(t− 3). This gives:

L−1

{
e−3s

s(s+ 1)(s+ 2)

}
= U(t− 3)

(
1

2
− e−(t−3) +

e−2(t−3)

2

)
Since the second term did not feature time-delay, it is more straightforward. We simply

obtain the inverse:

L−1

{
1

(s+ 1)(s+ 2)

}
= L−1

{
1

s+ 1
− 1

s+ 2

}
= U(t)

(
e−t − e−2t

)
Then putting both results together again gives us our final answer:

x(t) = U(t− 3)

(
1

2
− e−(t−3) +

e−2(t−3)

2

)
+ U(t)

(
e−t − e−2t

)
This second example shows the advantages of using the Laplace transforms method to

solve nonhomogeneous ODEs. In particular, it is not necessary to first solve the homoge-
neous ODE, and initial values are automatically accounted for in the solution rather than
requiring a set of extra steps to solve the simultaneous equations.

Nextwewill studyamoresystematicmethodof solvingsystemsofmultiple suchequations.
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2.8 Transfer Functions for Linear Systems

First, let’s go over some general theory and define some key concepts. Later they will be
demonstrated in a worked example.

• Transfer function: Consider a linear time-invariant system with input vi(t) and out-
put vo(t). The Transfer FunctionG(s) of the system is the ratio of the transform
of the output to the transform of the input:

v̄o(s) = G(s)× v̄i(s), and so G(s) =
v̄o(s)

v̄i(s)

It is independent of the input function, and describes the effect that the system has
on it.

Figure 3: Transfer Function Block Diagram

• When the transfer function is in the form:

G(s) =
P (s)

Q(s)

(i.e. as a simple fraction, so no fractions within the fraction!), then the Character-
istic Equation of the system is given by:

Q(s) = 0

• A stable linear system is one that will remain at rest unless it is excited by an external
source, and will return to rest if such external influences are removed. Therefore, in
the absence of an input, the response function of a stable system will tend to zero
as time approaches infinity. We could also say that any bounded input produces a
bounded output if the system is stable.

• The real parts of the solutions to the characteristic equation of a system’s transfer
function determine the stability of the system (thus characterising the behaviour of
the system). If there is a growing exponential, it indicates instability; while only
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decaying exponentials indicate stability. For stability, we require that the following
condition is satisfied:

All solutions ofQ(s) = 0 have negative real partRe(s) < 0.

• The order of the characteristic equation (i.e. the largest power of s, or equivalently,
the number of solutions) is the “order” of the filter. This value has implications for
the degree of complexity of behaviour that the system is capable of.

• Stable electronic systems can be used as a filter (a component which performs signal
processing functions).

• Amplitude Bode Plots can be constructed from the transfer function and used to
determine the type of filter.

• Say that for a circuit, we have obtained the transform of the output voltage: v̄o(s) =
G(s)×v̄i(s). It is thereforetheproductof twotransforms. Wecannot just invertG(s)
and v̄i(s) to obtain vo(t) = g(t)×vi(t), however instead we can obtain vo(t) using the
convolution integral for a given input. This is denoted vo(t) = g(t) ∗ vi(t), where
∗ denotes the convolution operator and g(t) is the inverse of the transfer function.
The convolution integral is given by:

vo(t) =

∫ t

0

g(t− z)vi(z)dz =

∫ t

0

g(z)vi(t− z)dz

so 0 < z < t.

• The Response Function g(t) (or impulse response) is the inverse Laplace trans-
form of the transfer function G(s). It is the response of the system to an input δ(t)
given by the delta function:
Let vi(t) = δ(t), then v̄i(s) = 1. Therefore v̄o(s) = G(s) × 1 = G(s), and so
g(t) = L−1(G(s)) = L−1(v̄o(s)) = vo(t). Hence the response function g(t) is the
output when the input is the delta function.
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We will demonstrate how to apply these concepts in the following example:

Example 2.33. Consider the circuit shown (based on an ideal “op-amp” (operational

amplifier)). You may assume that C,R > 0.

Analysing it using Kirchhoff’s laws yields the following p.d. equations:

(a) vi = R(i1 + i2 + i3) +R(i2 + i3)

(b)
1

C

∫ t

0

i1dt = R(i2 + i3)

(c)
1

C

∫ t

0

i2dt = 2Ri3

(d) vo = −2Ri3

Taking Laplace transforms of each yields:

(A) v̄i = R(̄i1 + 2̄i2 + 2̄i3)

(B)
1

sC
ī1 = R(̄i2 + ī3)

(C)
1

sC
ī2 = 2Rī3

(D) v̄o = −2Rī3

We want to obtain a relationship between v̄o and v̄i, so let’s eliminate the other s-

dependent variables ī1, ī2, ī3. You should think carefully how to do this before you start,

as you can end up going round in circles without a clear plan to obtain the variables

you want. In this case, we will do the following:

1. Use (A) and (B) to obtain an equation with v̄i, ī2 and ī3.

46



2. Then use (C) to eliminate ī2, leaving us with an equation in terms of v̄i and ī3.

3. Use (D) to substitute ī3 for a function of v̄o.

Substituting (B) into (A) to remove ī1:

v̄i = (̄i2 + ī3)(2R + sCR2)

Then eliminating ī2 using (C):

v̄i = ī3R(2 + sCR)(1 + 2sCR)

Finally, substituting in (D) and rearranging removes ī3 and gives us an equation in-

volving both v̄i and v̄o:

v̄o =
−2

(2 + sCR)(1 + 2sCR)
v̄i

Therefore the transfer function for this system is:

G(s) =
−2

(2 + sCR)(1 + 2sCR)

and the characteristic equation given by setting the denominator equal to zero is:

Q(s) = (2 + sCR)(1 + 2sCR) = 0

which is a second-order equation in s and yields the two solutions s1 = −2/CR and

s2 = −1/2CR. These solutions determine the exponents that will appear in the time-

domain solution for the output. That is, vo will have terms that include factors e−2t/CR

and e−t/2CR. These are both decaying exponentials (s1, s2 < 0) and so the system is

stable.

Finally, we use convolution to obtain the complete solution for vo(t), given the in-

put function vi(t) = EU(t) (i.e. constant input E begins at t = 0). First, we invert

the transfer function to obtain the response function.

Using partial fractions,

−2

(2 + sCR)(1 + 2sCR)
=

2

3

(
1

2 + sCR

)
− 4

3

(
1

1 + 2sCR

)
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Therefore,

g(t) = L−1

{
2

3

1

2 + sCR
− 4

3

1

1 + 2sCR

}

=
1

3
L−1

{
1

1 + s(CR/2)

}
− 4

3
L−1

{
1

1 + s(2CR)

}

=

(
1

3

1

CR/2
e−2t/CR − 4

3

1

2CR
e−t/2CR

)
U(t)

=
2

3CR
U(t)(e−2t/CR − e−t/2CR)

Then since vi(t) = EU(t), the convolution integral is:

vo(t) =

∫ t

0

g(t− z)vi(z)dz =

∫ t

0

2

3CR
U(t− z)(e−2(t−z)/CR − e−(t−z)/2CR)EU(z)dz

For t < 0, z < 0 and so U(z) = 0. Therefore vo(t) = 0 for all t < 0 and we can

restrict our interest to t > 0. In this range, 0 < z < t, so t− z > 0 and therefore both

U(t− z), U(z) = 1. Thus for t > 0,

vo(t) =

∫ t

0

2E

3CR

{
e−2t/CRe2z/CR − e−t/2CRez/2CR

}
dz

=
2E

3CR

{
e−2t/CR

∫ t

0

e2z/CRdz − e−t/2CR
∫ t

0

ez/2CRdz

}

=
2E

3CR

{
e−2t/CR

[
CR

2
e2z/CR

]t
0

− e−t/2CR
[
2CRez/2CR

]t
0

}

=
2E

3CR

{
e−2t/CRCR

2
(e2t/CR − 1)− 2CRe−t/2CR(et/2CR − 1)

}

=
2E

3CR

{
CR

2
(1− e−2t/CR)− 2CR(1− e−t/2CR)

}

=
E

3

{
4e−t/2CR − e−2t/CR − 3

}
U(t)

where we add the U(t) rather than state “for t > 0 only”.
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Example 2.34. Determine the stability of this filter, based on an ideal op-amp.

It has the corresponding set of equations:

(a) vi(t) =
1

C

∫ t

0

(i1 + i2)dt+Ri2

(b) R1i1 = Ri2 +
1

C

∫ t

0

i2dt

(c) vo(t) =
1

C

∫ t

0

i2dt+R2(i1 + i2)

where R,R1, R2 and C are poistive constants.

Begin by taking Laplace transforms,

(A) v̄i =
1

sC
(̄i1 + ī2) +Rī2

(B) R1ī1 = Rī2 +
1

sC
ī2

(C) v̄o =
1

sC
ī2 +R2(̄i1 + ī2)

Plan for obtaining v̄o in terms of v̄i only (note that there are many ways to do this, so

there is no uniquely correct set of steps. Whichever way you do it, you must demon-

strate a clear plan for how you are going to obtain an equation with v̄o and v̄i as the

only variables):

1. Use (B) to eliminate ī1 from (A). Call this equation (D), it has variables v̄i and ī2.

2. Use (B) to eliminate ī1 from (C). Call this equation (E), it has variables v̄o and ī2.

3. Then use (E) to substitute ī2 for a function of v̄o in (D).
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Substituting equation (B) into (A) yields equation (D):

v̄i = ī2

(
1

sC
+R

)
+

1

sC

(
R

R2

ī2 +
1

sCR1

ī2

)
= ī2

(
1

Cs
+R +

R

sCR1

+
1

C2s2R1

)
Then substituting equation (B) into (C) yields equation (E):

v̄i = ī2

(
1

sC
+R2

)
+R2

(
R

R1

ī2 +
1

sCR1

ī2

)
= ī2

(
1

sC
+R2 +

RR2

R1

+
R2

sCR1

)
Combining (D) and (E) to eliminate ī2, we get:

v̄o = v̄i

{
(1/sC) +R2 + (RR2/R1) + (R2/sCR1)

(1/sC) +R + (R/sCR1) + (1/s2C2R1)

}
Tidying this up a bit will make it easier to obtain the solutions of the characteristic

equation. Let’s remove the subfractions by multiplying both the numerator and denom-

inator by s2C2R1:

v̄o = v̄i

{
sCR1 + s2C2R1R2 + s2C2RR2 + sCR2

sCR1 + s2C2RR1 + sCR + 1

}

= v̄i

{
sC
(
s(CR1R2 + CRR2) + (R1 +R2)

)
(sCR + 1)(sCR1 + 1)

}
Therefore the transfer function for this system is

G(s) =
sC
(
s(CR1R2 + CRR2) + (R1 +R2)

)
(sCR + 1)(sCR1 + 1)

and the characteristic equation is

(sCR + 1)(sCR1 + 1) = 0

which has solutions s1 = −1
CR

< 0 and s2 = −1
CR1

< 0. Hence Re(s) < 0 for all solutions,

and so this second-order filter is stable.
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Example 2.35. Consider example 3.1 again, however this time the input is given by

vi(t) = E sin(ωt)U(t)

Then the convolution integral in this case is:

vo(t) =

∫ t

0

g(t− z)vi(z)dz

=
2E

3CR

∫ t

0

(e−2(t−z)/CR − e−(t−z)/2CR) sin(ωz)dz for t > 0 only

=
2E

3CR

{
e−2t/CR

∫ t

0

e2z/CR sin(ωz)dz − e−t/2CR
∫ t

0

ez/2CR sin(ωz)dz

}
This integral can then be evaluated using the method of integration by parts.
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2.9 Amplitude Bode Plots

When we have obtained the transfer function G(s) for a linear system, and determined
that it is stable, we can then sketch Bode plots in order to determine the nature of the filter.

Once we have obtained the plot, we can determine if the filter is:

• High-pass (allows only high frequencies through)

• Low-pass (allows only frequencies below a certain value through)

• All-pass (allows all frequencies through)

• Band pass (allows only frequencies within a particular interval through)

• Band-eliminate/band-stop (allows all frequencies through except for a given inter-
val).

This is determined simply by looking at where the plot is positive and negative. Remember
that the transfer function G(s) describes how the system changes the input signal to get
the output signal:

v̄o(s) = G(s)v̄i(s)

so for example if the transfer function’s amplitude approaches zero when the frequency ω
of the input is high, that means the output signal will have close to zero amplitude, and so
the system is in effect not allowing high frequency input signals to pass through.

(a) Low-pass (b) High-pass

(c) All-pass (d) Band-pass (e) Band-eliminate

Figure 4: Types of filter
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We will be content to make some quick estimates of the behaviour of a simple filter by
considering how the transfer function behaves when the frequency of the input signal is
extremely small (ω << 1) or extremely large (ω >> 1). This can be done by considering
which terms dominate the numerator and denominator of the transfer function at these
frequencies.
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Example 2.36 (First-order Low-pass).

A system has the transfer function:

G(s) =
−4

1 + sRC

We let s = jω, then:

|G(jω)| =
∣∣∣∣ −4

1 + jωRC

∣∣∣∣ =
| − 4|

|1 + jωRC|
=

4

|1 + jωRC|

Analysing this function at very low and very high frequencies (ω):

When ω << 1 : |G(jω)| = 4

|1 + (smaller)|
≈ 4

1
= 4

When ω >> 1 : |G(jω)| = 4

|(smaller) + jωRC|
≈ 4

|jωRC|
=

4

ωRC
→ 0 as ω →∞

Hence this transfer function is positive for low frequencies and approaches zero for high

frequencies, suggesting that this is likely to be a low-pass filter.
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Example 2.37 (First-order High-pass).

A system has the transfer function:

G(s) =
sCR

1 + sCR

We let s = jω, then:

|G(jω)| =
∣∣∣∣ jωCR

1 + jωCR

∣∣∣∣ =
|jωCR|
|1 + jωCR|

=
ωCR

|1 + jωCR|

Approximating the behaviour at very low and very high frequencies (ω):

When ω << 1 : |G(jω)| = ωCR

|1 + (smaller)|
≈ ωCR

1
→ 0 as ω → 0

When ω >> 1 : |G(jω)| = ωCR

|(smaller) + jωCR|
≈ ωCR

|jωCR|
=
ωCR

ωCR
= 1

Hence this transfer function approaches zero for low frequencies but is positive for high

frequencies, and thus a high-pass filter.
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Example 2.38 (Second-order Low-pass).

Consider the transfer function:

G(s) =
1

5Rs2 + 18s+ 1

then let s = jω, and

|G(jω)| = 1

| − 5Rω2 + 18jω + 1|

Then we consider which terms dominate for very small and very large ω:

When ω << 1 : |G(jω)| = 1

|(smaller) + 1|
≈ 1

When ω >> 1 : |G(jω)| = 1

| − 5Rω2 + (smaller)|
≈ 1

5Rω2
→ 0 as ω →∞

So this is probably a (second-order) low-pass filter.
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3 Fourier Analysis

Named after Jean Baptiste Joseph Fourier (1768-1830). Also a French mathematician, he
originally trained for the priesthood before teaching mathematics, and became involved
in the French Revolution. He advised Napoleon during his invasion of Egypt, held a post
at the École Polytechnique in Paris, was the Prefect of Grenoble and permanent secretary
of the French Academy of Sciences.

Fourier developed the idea of what we now call Fourier Series while working on the problem
of heat conduction in solids. Other famous mathematicians including Leonhard Euler had
used series like this in the past, but hadn’t explored its applications in this way. Fourier’s
paper was rejected by reviewers including Laplace, but the academy subsequently made
the problem of heat conduction the subject of its next Grand Prize. Fourier resubmitted
some revised work and won the prize, but his paper was still not published in the academy
journal for several years.
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3.1 Trigonometry and Waveforms

Recall the functions sinandcos, andthetrigonometricequations for right-angledtriangles.
We may also need some well-known trigonometric identities, such as

sin2(x) + cos2(x) = 1 for all values of x

Rather than using degrees in a cycle from 0◦ to 360◦, we prefer to use the unit radians
for most scientific applications. These vary from 0 to 2π for a full cycle, and in particular,
the radian is defined as the angle between two radii that create a circular arc with a length
equal to one radius.

Consider a functions f and g of time that take the forms:

f(t) = A sin(ωt+ φ) + d and g(t) = B cos(ωt+ φ) + d

In this case, ω is the angular frequency of f and g, and φ is the phase angle which
measures the lag or lead of the term from the pure sine or cosine function of the same
frequency. Note that in this case,φmay also be called the “phase shift”, which in engineer-
ing and physics is not the same as what is referred to as the “horizontal shift”. Instead,
the horizontal shift is φ/ω, obtained by factorising f(t) = A sin(ω(t + φ/ω)), but this
terminology can vary slightly between disciplines.
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Since sin and cos have unit amplitude (maximum absolute displacement of the oscil-
lating term from equilibrium), the amplitude of functions f(t) and g(t) will be A and B
respectively. The phase angle describes how the function is shifted to the left (for a positive
value of φ) compared to the regular sin(ωt) or cos(ωt). Finally, d is the vertical shift and
describes how much the final wave is shifted up or down. If d is positive, the wave is shifted
up.

The cosine function is said to lead the sine function by 90◦ or π
2

radians, while the sine
function is said to lag the cosine function by 90◦ or π

2
radians. This means that we can

express cosasa sin functionwithaphase shift, or sinas coswithaphase shift. Inparticular,

cos
(
x− π

2

)
= sin(x) and cos(x) = sin

(
x+

π

2

)

Sine and cosine are periodic functions. In general, a function f(t) is periodic with
period T if for all values of t in the domain, and for any integerm, we have:

f(t+mT ) = f(t)

The time required for one complete cycle is called the period T of the function. Then the
number of full cycles per unit of time (usually seconds) is called the frequency and given
by f = T−1. However, when using radians, it is usually more useful to talk about the
angular frequency ω which is measured in radians (rather than complete cycles) per
second. Hence,

ω =
2π

T
or T =

2π

ω

As the period of oscillation T increases, the frequency (both angular and regular)
decreases and vice versa.
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3.2 Plotting Waveforms on a Computer

Throughout this chapter, you may find it helpful to visualise the signals you are analysing.

We can easily draw generalised trigonometric functions using a computer package. Ge-
ogebra is free and very easy to use on a web browser, or we can use MATLAB.

MATLAB has many different commands for seemingly-basic functions such as curve-
plotting, that all work in slightly different ways and situations.

For visualing a simple function, such as a sine wave or a Heaviside function, we can declare
it as a symbolic function and then use fplot to visualise it over [−5, 5]:
syms x

y = sin(x)

fplot(x,y)

For plotting lines from numeric data sets, or anything that isn’t necessarily a pre-defined
symbolic function, we can use the standard plot command. However, this requires two
arguments: one vector containing all the x-coordinates of the points that you wish to join
up, and a second vector of equal length containing the corresponding y-values.

For example, to plot the graph of y = sin(x) between x = 0 and x = 5:
x = linspace(0,5,1000)

This creates a vector of 1000 evenly spaced values between 0 and 5. These will be the
x-coordinates of the points that plot will then join up.
y = sin(x)

plot(x,y)

Of course, you can include optional arguments in the plot command to customise
the graph, such as changing the line thickness: plot(x,y,’LineWidth’,5)

If you want to change the limits on the axes that are in view, follow-up with the command
xlim . So if we wanted to zoom in on the graph between x = 1 and x = 2, we would use:
xlim([1 2]) and similarly for the y-axis using ylim . You can also use the command

hold on; to plot multiple functions on the same image, as otherwise each new use of plot
will replace the previous graph.
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3.3 Introduction to Fourier Series

You may already have encountered the concept of representing a function as a series, for
example using Maclaurin’s theorem to obtain a power series expansion for a function. The
core idea of Fourier analysis is that many functions can be approximated by a series (a
summation) of sine and cosine functions of increasing angular frequency. It is usually
applied to periodic functions. The process centres on calculating the amplitude of each
sine and cosine term in the series that approximates our function, and this may be known
as Fourier, harmonic, or spectral analysis.

Theorem 3.1. Any finite periodic function f(t) with period T can be represented by

a unique series of sines and cosines. In particular, there exist two unique sequences

(an)n and (bn)n such that:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt)

where ω = 2π
T

is the angular frequency of f , and so the nth term of the summation

has angular frequency nω. This is the Fourier Series representation of f(t).

The terms in the series have certain names:

• a0
2

is the DC level of f(t).

• a1 cos(ωt) + b1 sin(ωt) is the first harmonic, also called the Fundamental mode.

• an cos(nωt) + bn sin(nωt) is the nth Harmonic. It has angular frequencynω, which
is n times the angular frequency of the fundamental.

The standard method of obtaining these Fourier Coefficients is using the following inte-
grals. This is not the method you will be expected to use but it is important that you are
aware of it!

a0 =
2

T

∫ T

0

f(t)dt

an =
2

T

∫ T

0

f(t) cos(nωt)dt

bn =
2

T

∫ T

0

f(t) sin(nωt)dt

in each case, we are calculating 2× the mean value of the integrand over the range of
one period (so the DC level is equivalent to the average value of f(t) over one
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complete period). In particular, we used the first cycle 0 < t < T , however any full
period could be used. That is, we could integrate over the range t0 < t < t0 + T for any
value of t0 and get the same results. Some textbooks will prefer the cycle−T/2 < t < T/2.

The N th Partial Sum of the Fourier Series, say fN(t), for a function f(t) is when it
is truncated to a finite number of terms, in particular the firstN . That is,

fN(t) =
a0

2
+

N−1∑
n=1

an cos(nωt) +
N−1∑
n=0

bn sin(nωt)

As we increase the number of terms used, the partial sum begins to approximate the func-
tionmoreaccurately (inmathematical terms, the series converges to theoriginal function).
In practical terms, the lower n harmonics are lower frequencies, so taking a partial sum is
equivalent to low frequency filtering (blocking higher frequencies) which is the same effect
as when employing low-quality measuring equipment or transducers.

In the context of measuring equipment, if it is not even able to detect the fundamental (e.g.
a moving coil voltmeter) only the DC level will be displayed. With more sophisticated
measuring equipment, more of the signal will be detected (i.e. the fundamental frequency
and possibly some harmonics) and so the “received” waveform will be closer to the actual
waveform. Themoreharmonics thataredetected, thecloserweget to theactualwaveform.

Figure 5: Square Wave approximation by Harmonics

3.3.1 Theory: Method of Determining the Fourier Series

1. Identify f(t) and substitute it into the equations for an, bn.
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2. Performtheintegrals. ThisoftenrequirestheuseoftheIntegrationByPartsmethod.
If the function’s behaviour differs qualitatively across a period (“piecewise”), we will
need to split the integrals up.

3. Calculate a0 separately, either by integration or from inspecting the graph of the
function to determine the average values.

3.3.2 Basic Examples

Example 3.1 (Pulse Wave). (a) Consider the pulse wave, used in digital switching

circuits, with period T .

Figure 6: Pulse Wave

It is a piecewise function, defined in the following way:

f(t) =

{
E, for nT < t < nT + T

2

0, for nT + T
2
< t < (n+ 1)T

∀n ∈ Z

We will consider the behaviour in the first cycle 0 < t < T , and will need to split

the integrals for a0, an, bn over the two domains of t for which f displays different

behaviour:

a0 =
2

T

∫ T

0

f(t)dt

=
2

T

(∫ T/2

0

Edt+

∫ T

T/2

0dt

)

=
2

T

[
Et
]T/2

0
= E
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So the DC level is a0
2

= E
2

, and we could also see from the graph that this is the

average value of f(t) over a cycle.

For n ≥ 1,

an =
2

T

∫ T

0

f(t) cos(nωt)dt

=
2

T

∫ T

0

f(t) cos

(
2πn

T

)
dt

=
2

T

(∫ T/2

0

E cos

(
2nπ

T
t

)
dt+

∫ T

T/2

0× cos

(
2nπ

T
t

)
dt

)

=
2E

T

∫ T/2

0

cos

(
2nπ

T
t

)
dt

=
2E

T

[
T

2πn
sin(

2nπ

T
t)

]T/2
0

=
E

πn

(
sin(πn)− sin(0)

)
= 0

Note that this shows why we need to calculate a0 separately, as n = 0 in this

formula returns 0/0 which is undefined (although applying l’Hôpital’s rule would

also yield the correct answer).

bn =
2

T

∫ T

0

f(t) sin(nωt)dt

=
2

T

∫ T

0

f(t) sin

(
2πn

T

)
dt

=
2

T

(∫ T/2

0

E sin

(
2nπ

T
t

)
dt+

∫ T

T/2

0× sin

(
2nπ

T
t

)
dt

)

=
2E

T

[
T

−2πn
cos

(
2nπ

T
t

)]T/2
0

=
−E
πn

(cos(πn)− cos(0))

=
−E
πn

((−1)n − 1) =
E

πn
((−1)n+1 + 1)
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Hence the Fourier series is:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt)

=
E

2
+
∞∑
n=1

0× cos(nωt) +
∞∑
n=1

E

πn
((−1)n+1 + 1) sin(nωt)

=
E

2
+
E

π

∞∑
n=1

1

n
((−1)n+1 + 1) sin(nωt)

(b) Consider this square wave F (t).

Figure 7: Square Wave

As an exercise, you should do this one from first principles of Fourier analysis

yourself. However we will quickly verify the result by making a transformation

from f(t). In particular, we can transform f(t) to F (t) by first making a trans-

lation (shift) down by E/2 in the y-axis, and then stretching by a factor of 2 in

the y-axis. That is, F (t) = 2(f(t) − E
2

). Therefore the same relationship exists

between their respective Fourier representations:

F (t) = 2(f(t)− E

2
) =

2E

π

∞∑
n=1

1

n
((−1)n+1 + 1) sin(nωt).

Note that there are sometimes several equivalent ways to write the Fourier series

(although the series itself is unique, so these are just slightly different ways of
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presenting the same result). Expanding the series above, we see:

F (t) =
2E

π

(
2 sin(ωt) + 0× sin(2ωt) + 2 sin(3ωt) + 0× sin(4ωt) + . . .

)
That is, ((−1)n+1 + 1) is equal to 2 for odd values of n, and zero for even values.

Therefore, if we only account for the odd values of n, we can represent the wave

by

F (t) =
4E

π

∑
odd n∈N

1

n
sin(nωt).

Alternatively we can build in to the function that we only count the odd natural

numbers, so that the sum is from n = 1, 2, 3, . . . but that n maps to the nth odd

positive integer 2n− 1:

F (t) =
4E

π

∞∑
n=1

1

2n− 1
sin((2n− 1)ωt).

All three expressions of the series for F (t) are equivalent and correct.
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3.4 Special cases of Fourier Series

3.4.1 Odd and Even Functions

Some functions can be classified as odd or even (or, in some cases, both!).

Definition 3.1. A function f(t) is odd if it satisfies f(t0) = −f(−t0) for all t0 ∈ R.

Graphically, odd functions appear to have been rotated through 180◦ about the origin.
Importantly, the sine function is odd.

Definition 3.2. A function f(t) is even if it satisfies f(t0) = f(−t0) for all t0 ∈ R.

Graphically, even functions appear reflected about the y-axis. The cosine function is
even.

Consider the image. From left to right, the functions are even, odd, and neither.

Why do we mention this here? Because of the relationship between Fourier coefficients
and sine and cosine, it turns out that:
(a) If f(t) is an even function,

bn =
2

T

∫ T

0

f(t) sin(nωt)dt =
2

T

∫ T/2

−T/2
f(t) sin(nωt)dt = 0 ∀ n ∈ N

and,
(b) If f(t) is an odd function,

an =
2

T

∫ T

0

f(t) cos(nωt)dt =
2

T

∫ T/2

−T/2
f(t) cos(nωt)dt = 0 ∀ n ∈ N

You can do some integration by parts to verify these results, which simply say that if
the function f(t) is even, then it is expressed as a sum of even functions (i.e. cos(nωt)),
while if f(t) is odd then its Fourier series expansion will consist entirely of odd functions
(sin(nωt)). In applicable cases where we want to find the Fourier series of an odd or even
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function, we can use this as a shortcut in determining one half of the Fourier coefficients.

The key takeaway here is that when determining the regular Fourier coefficients of a
periodic function f(t):

(a) If f(t) is an even function, then bn = 0 ∀ n ∈ N.
(b) If f(t) is an odd function, then an = 0 ∀ n ∈ N.

3.4.2 Discontinuities and the Gibbs Phenomenon

When using Fourier series to approximate a discontinuous function, the partial sums will
always feature a spike when approaching the point of discontinuity t0 from the either
the left or the right sides. By adding sufficiently many terms, the domain (but not the
magnitude) of the errors can be made arbitrarily small, but will always be present, leading
to a sharper “spike” on each side of the discontinuity asN →∞. This is known as Gibb’s
Phenomenon.
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3.5 Complex Form and Phasors

Complex number consist of a real part and an imaginary part that involves the imaginary
number. The imaginary number is defined as the square root of−1, and is denoted i by
mathematicians, and j by engineers. Using special properties of trigonometric functions,
we can represent a complex numberA = a− jb in polar or exponential form:

A = R
(

cos(φ)− j sin(φ)
)

= R eφj

where

R =
√
a2 + b2 and φ = tan−1

(
−b
a

)
Returning to Fourier series, using the exponential form we can construct a complex quan-
tity from the harmonics called a “phasor”, which is a vector in the complex plane that
encodes information about the amplitude of the signal. Recall that the nth harmonic for
f(t) is given by an cos(nωt) + bn sin(nωt). Then the phasor (the complex amplitude) for
the nth harmonic is:

An = an − jbn = Rn ejφn

where

Rn =
√
a2
n + b2

n and tan(φn) =
−bn
an

Then we can use phasor representation to state the Fourier series for f(t) in complex form:

f(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

where An = an − jbn, ω =
2π

T

The phasor is the complex Fourier coefficient for the nth harmonic. It can be obtained
by:

An = an − jbn =
2

T

∫ T

0

f(t) cos(nωt)dt− j 2

T

∫ T

0

f(t) sin(nωt)dt

=
2

T

∫ T

0

f(t)(cos(nωt)− j sin(nωt))dt

=
2

T

∫ T

0

f(t)(cos(−nωt) + j sin(−nωt))dt

and so we have:

An =
2

T

∫ T

0

f(t) e−jnωt dt

However, we will not perform calculations using this method, as we can use the complex
form to avoid using integration altogether!
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3.6 Special Values

Due to the periodicity of trigonometric waves, there are certain exponential and polar
forms to look out for, as they can be nicely simplified. In the exponential form, φ (called
the argument) represents the angle (in radians) that we have rotated anticlockwise around
the unit circle, starting from the positive real axis. You can also calculate these special
values using polar form, as they are angles at which sine or cosine take a special value such
as one, zero or negative one. Hence, we are looking for values at which the argument is an
integer multiple of π

2
:

• For any integer n,

e2nπj = cos(2nπ) + j sin(2nπ) = 1 + j × 0 = 1

• For any integer n,

enπj = cos(nπ) + j sin(nπ)

= cos(nπ) + j × 0 = cos(nπ) = (−1)n =


−1 for odd n,

+1 for even n.
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3.7 Method using Laplace transforms

Next we will apply what we learned about Laplace transforms to the complex form of
Fourier series.

This is the method (Laplace transforms and phasors) of Fourier anal-
ysis that shall be assessed for this course.

Given a period function f(t), define:

g(t) =


f(t) for 0 < t < T ,

0 otherwise.

Then,

An = an − jbn =
2

T

∫ T

0

f(t) e−jnωt dt

=
2

T

∫ T

0

g(t) e−jnωt dt

=
2

T

∫ ∞
0

g(t) e−jnωt dt

since g(t) = 0 for t > T =⇒ 2

T

∫ ∞
T

g(t) e−jnωt dt = 0.

Recognising that this involves the definition of a Laplace transform, we then obtain the
important result:

An =
2

T
ḡ(jnω)
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3.7.1 Method

Thus, our method for obtaining the Fourier series for a periodic signal f(t) using the
method of phasors and Laplace transforms is as follows:

1. Define

g(t) =


f(t) for 0 < t < T ,

0 otherwise.

2. Obtain the Laplace transform ḡ(s).

3. Change the variable to obtain ḡ(jnω).

4. The phasor of the nth harmonic is then:

An =
2

T
ḡ(jnω)

5. Also find the DC level a0
2

either from the average value of the graph, or using the
integral

a0 =
2

T

∫ T

0

f(t)dt

6. State the complex form of the Fourier Series, given by:

f(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

7. (Optional) If you are asked to obtain the usual coefficients from the phasors, use:

an = Re{An} and bn = −Im{An}

and then you can state the regular form of the Fourier series:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt)
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3.7.2 Examples

Example 3.2. Consider again the sawtooth wave. We will now derive its Fourier

Series using this method of phasors and Laplace transforms.

Figure 8: Sawtooth Wave

In this case, f(t) = Et
T

during the first cycle, so we want g(t) = Et
T

for time

0 < t < T and zero otherwise. This can be achieved using a combination of step

changes that will turn “on” at time t = 0 and “off” at t = T :

g(t) =
Et

T

(
U(t)− U(t− T )

)
=
E

T

(
tU(t)− tU(t− T )

)
We need to write the second term in delay form, so:

g(t) =
E

T

(
tU(t)−

(
(t− T ) + T

)
U(t− T )

)
Then the Laplace transfom is given by:

ḡ(s) = L
{
E

T

(
tU(t)−

(
(t− T ) + T

)
U(t− T )

)}

=
E

T

(
L
{
tU(t)

}
− L

{(
(t− T ) + T

)
U(t− T )

})

=
E

T

(
1

s2
− L

{
t+ T

}
e−sT

)

=
E

T

(
1

s2
−
[

1

s2
+
T

s

]
e−sT

)
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Changing the variable from s to jnω:

ḡ(jnω) =
E

T

(
1

(jnω)2
−
[

1

(jnω)2
+

T

jnω

]
e−jnωT

)

=
E

T

(
−T 2

4n2π2
−
[
−T 2

4n2π2
− j T

2

2πn

]
e−2jnπ

)

since ω =
2π

T
, j2 = −1,

1

j
= −j

=
E

T

(
−T 2

4n2π2
− −T

2

4n2π2
+ j

T 2

2πn

)
since e−2jnπ = cos(2πn)− j sin(2πn) = 1 ∀n ∈ N

= j
ET

2πn

Hence the phasor of the nth harmonic is,

An =
2

T
j
ET

2πn
= j

E

πn

From looking at the graph, the average value of f(t) over one cycle is clearly E
2

. Alter-

natively,

a0 =
2

T

∫ T

0

f(t)dt =
2

T

∫ T

0

E

T
tdt

=
2E

T 2

[
1

2
t2
]T

0

= E

and so the DC level is a0
2

= E
2

.

Thus the complex form of the Fourier series is:

f(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

=
E

2
+Re

{ ∞∑
n=1

j
E

πn
ejnωt

}
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To obtain the regular Fourier coefficients:

an = Re{An} = Re

{
j
E

πn

}
= 0

bn = −Im{An} = −Im
{
j
E

πn

}
=
−E
πn

So the Fourier series with real coefficients is:

f(t) =
E

2
− E

π

∞∑
n=1

1

n
sin

(
2πnt

T

)
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Example 3.3. Consider the clipped sawtooth waveform again.

In the first cycle 0 < t < T , this wave is given by:

f(t) =


2Et
T

for 0 < t < T/2,

E for T/2 < t < T .

Therefore we use step functions to define g, with 2Et
T

turning on at time t = 0 and off

at t = T/2, and E turning on at t = T/2 and off at t = T .

That is:

g(t) =
2Et

T

{
U(t)− U(t− T/2)

}
+ E

{
U(t− T/2)− U(t− T )

}
=

2Et

T
U(t)− 2Et

T
U(t− T/2) + EU(t− T/2)− EU(t− T )

=
2Et

T
U(t) + E

(
1− 2t

T

)
U(t− T/2)− EU(t− T )

The first term has no time delay, and the final term is in delay form. Therefore we

just need to put the middle term in delay form:

g(t) =
2Et

T
U(t) + E

(
1− 2

T

(
(t− T

2
) +

T

2

))
U(t− T/2)− EU(t− T )

= E

{
2

T
tU(t) +

(
1− 2

T

(
t− T

2

)
− 1

)
U(t− T/2)− U(t− T )

}

= E

{
2

T
tU(t)− 2

T
(t− T

2
)U(t− T/2)− U(t− T )

}
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Taking Laplace transforms (using the delay theorem for the second and third terms):

ḡ(s) = L
{
E

{
2

T
tU(t)− 2

T
(t− T

2
)U(t− T/2)− U(t− T )

}}

= E

{
2

T
L
{
tU(t)

}
− 2

T
L
{

(t− T

2
)U(t− T/2)

}
− L

{
U(t− T )

}}

= E

{
2

Ts2
− 2

T
L
{
t
}

e−sT/2−L
{

1
}

e−sT
}

= E

{
2

Ts2
− 2

Ts2
e−sT/2−1

s
e−sT

}
Then substituting s for jnω:

ḡ(jnω) = E

{
2

T (jnω)2
(1− e−jnωT/2)− 1

jnω
e−jnωT

}

= E

{
−2T 2

4Tn2π2
(1− e−jnπ) +

jT

2πn
e−2πjn

}

since ω =
2π

T
, j2 = −1,

1

j
= −j

= ET

{
1

2π2n2
(e−jnπ−1) +

j

2πn

}
since e−2jnπ = cos(2πn)− j sin(2πn) = 1 ∀n ∈ N

And since e−jnπ = cos(−πn) + j sin(−πn) = cos(πn) = (−1)n, we have:

ḡ(jnω) = ET

{
1

2π2n2

(
(−1)n − 1

)
+

j

2πn

}
=

ET

2π2n2

{(
(−1)n − 1

)
+ jπn

}
Therefore we have the phasor of the nth harmonic:

An =
2

T
ḡ(jnω) =

E

π2n2

{
(−1)n − 1 + jπn

}
From the graph, the average of f(t) over one cycle is 1

2
× E

2
+ 1

2
×E = 3E

4
. Alternatively
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we can use the integral:

a0 =
2

T

∫ T

0

f(t)dt =
2

T

{∫ T/2

0

2E

T
tdt+

∫ T

T/2

Edt

}

=
2E

T

{
2

T

[
1

2
t2
]T/2

0

+
[
t
]T
T/2

}

=
2E

T

{
2

T

1

2

T 2

4
− 0 + T − T

2

}
=

3E

2

And so again the DC level is a0
2

= 3E
4

.

Thus, the complex form of the Fourier Series representation of f(t) is:

f(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

=
3E

4
+Re

{
E

π2

∞∑
n=1

(
(−1)n − 1 + jπn

)
n2

ejnωt
}

where ω =
2π

T
.

To obtain the regular Fourier coefficients:

an =
−E
π2n2

(
1− cos(πn)

)
=


−2E
π2n2 for odd n,

0 for even n,

and

bn = −Im{An} =
−E
πn

∀n ∈ N.

Then the real Fourier Series representation for f(t) is:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt)

=
3E

4
− 2E

π2

∑
odd n∈N

1

n2
cos

(
2πnt

T

)
− E

π

∞∑
n=1

1

n
sin

(
2πnt

T

)
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3.8 Use of Fourier Series in Linear Circuit Analysis

3.8.1 Theory

The complex form of Fourier series can be useful for analying the output voltage in linear
circuits. Let f(t) be a period input to a linear system. Then considering each harmonic
individually, let’s look at the effect the system has on the input, encoded in its transfer
function G(s). Then G(jnω) is the frequency response function for the system, and can
be obtained either fromG(s) or by analysing the system based on complex impedences.

For thenth harmonic, letAn be the input phasor to the system. Then the output phasor
Vn is given by:

Vn = G(jnω)An

and so the output waveform is:

v(t) = G(0)
a0

2
+Re

{ ∞∑
n=1

G(jnω)An ejnωt
}

A particular input phasor is modified by the frequency response function to produce
the corresponding output phasor. Multiplying byG(jnω) will multiply the modulus ofAn
by the modulus ofG(jnω) and so produce the amplitude of thenth harmonic of the output
waveform. Furthermore, the phase angle (the argument) of G(jnω) will be added to the
phase angle ofAn to produce the phase angle of the nth harmonic Vn of the output.

If the modulus of G(jnω) is dependent on n then the amplitude of each harmonic may
be scaled by a different factor (amplitude distortion). When the phase angle ofG(jnω)
depends on n then each phase angle may be altered by a different amount (phase distor-
tion). In most cases, both types of distortion will occur. The presence of either or both
will result in the output waveform having a different shape to the input waveform.

Let,

An = rn e−jφn , G(jnω) = gn e−jΦn ,
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then

Vn = G(jnω)An = gnrn e−j(φn+Φn)

so the output phasor has amplitude gnrn and phase angle φn + Φn.

3.8.2 Examples

Example 3.4. Consider the circuit shown.

Kirchoff’s Laws yield the following equations:

e(t) = R(i1(t) + i2(t)) +Ri2(t),
1

C

∫ t

0

i1(t)dt = Ri2(t), v(t) = Ri2(t)

where R and C are positive constants, e(t) is the input signal and v(t) is the output

signal. Given a general input signal

e(t) =
ao
2

+Re

{ ∞∑
n=1

An ejnωt
}

what will the Fourier Series of the corresponding output v(t) be?

Taking Laplace transforms of each, we obtain:

ē(s) = R(̄i1 + 2̄i2),
1

sC
ī1 = Rī2, v̄(s) = Rī2

and so,

G(s) =
v̄(s)

ē(s)
=

Rī2
R(̄i1 + 2̄i2)

=
ī2

ī1 + 2̄i2

=
ī2

sCRī2 + 2̄i2
=

1

sCR + 2
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Therefore the frequency response function is:

G(jnω) =
1

jnωCR + 2
.

Next we let

en(t) = Re

{
An ejnωt

}
, vn(t) = Re

{
Vn ejnωt

}
represent the nth harmonic of e(t), v(t) respectively, so that An, Vn are phasors with

angular frequency nω satisfying:

Vn =

(
1

2 + jnωCR

)
An

so that the frequency response function for the system is

G(jnω) =
1

2 + jnωCR

For the DC level,

V0

2
= G(0)

1

2
A0 =

1

4
a0

Hence if the Fourier series of the input signal is

e(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

then we have output:

v(t) = G(0)
1

2
a0 +Re

{ ∞∑
n=1

G(jnω)An ejnωt
}

=
a0

4
+Re

{ ∞∑
n=1

1

2 + jnωCR
An ejnωt

}
Since G(jnω) is complex and frequency dependent we should expect both amplitude and

phase distortion.

Example 3.5. Next consider the circuit shown.
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Analysing the complex impedences for an ideal op-amp on a dual rail supply, we

would find that

G(jnω) = 2

{
1 + jnωCR

1 + 2jnωCR

}
Therefore, given the input signal with Fourier series:

e(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

the output from this system will be:

v(t) = a0 +Re

{
2
∞∑
n=1

1 + jnωCR

1 + 2jnωCR
An ejnωt

}
.

For example, consider the pulse wave input.

In this case,

An = an − jbn =
−jE
πn

(
1− cos(πn)

)
=


−2Ej
πn

for odd n,

0 for even n,

and A0

2
= a0

2
×G(0) = E

2
× 2 = E. So we have,

v(t) = E +Re

{ ∑
odd n∈N

2

(
1 + jnωCR

1 + 2jnωCR

)(
−2Ej

πn

)
ejnωt

}
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Example 3.6. Consider the filter shown.

It is based on linear components and an ideal operational amplifier connected to a

dual supply. The following equations describe the currents i1, i2, i3, input voltage vi and

output voltage vo:

vi(t) =
1

C1

∫ t

0

(i1(t) + i2(t) + i3(t))dt+R1(i2(t) + i3(t))

1

C1

∫ t

0

i1(t)dt = R1(i2(t) + i3(t))

R2i3(t) =
1

C2

∫ t

0

i2(t)dt

vo(t) = −R2i3(t)

where R1, R2, C1, C2 are positive constants. Given a general input

vi(t) =
ao
2

+Re

{ ∞∑
n=1

An ejnωt
}

determine the Fourier Series of the output vo(t).

Taking Laplace transforms of the circuit equations,

(1) v̄i(s) =
1

sC1

(̄i1 + ī2 + ī3) +R1(̄i2 + ī3) = 0

(2)
1

sC1

ī1 = R(̄i2 + ī3)

(3) R2ī3 =
1

sC2

ī2

(4) v̄o(s) = −R2ī3
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Plan: i) Substitute (2) into (1) to eliminate ī1. ii) Then substitute in (3) to replace

ī2 with a function of ī3. iii) Finally, use (4) to replace all occurrences of ī3 with −v̄o/R2.

i) Using (2) to eliminate ī1 from (1):

v̄i = R1(̄i2 + ī3) +
1

sC1

(̄i2 + ī3) +R1(̄i2 + ī3)

v̄i =
1

sC1

(̄i2 + ī3) + 2R1(̄i2 + ī3)

v̄i =

(
1

sC1

+ 2R1

)
(̄i2 + ī3)

v̄i =
1

sC1

(1 + 2sC1R1)(̄i2 + ī3) (5)

ii) Next, rearranging (3), we obtain:

ī2 = sC2R2ī3

Substituting this into (5) to eliminate ī2:

v̄i =
1

sC1

(1 + 2sC1R1)(sC2R2ī3 + ī3)

v̄i =
1

sC1

(1 + 2sC1R1)(1 + sC2R2)̄i3 (6)

iii) Finally, we rearrange (4) to obtain:

ī3 =
−1

R2

v̄o

And substitute this into (6), eliminating ī3 and thus getting a relationship between v̄i

and v̄o:

v̄i =
−1

sC1R2

(1 + 2sC1R1)(1 + sC2R2)v̄o

Rearranging, we obtain the transfer function of the system:

G(s) =
v̄o
v̄i

=
−sC1R2

(1 + 2sC1R1)(1 + sC2R2)
.

The characteristic equation (1 + 2sC1R1)(1 + sC2R2) = 0 yields two solutions for s:

s =
−1

2C1R1

, and s =
−1

C2R2
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Thus for both solutions Re{s} < 0 and so this system is a stable second-order band-pass

filter.

Then to obtain the frequency response function G(jnω), simply replace s with jnω

in the transfer function G(s).

G(jnω) =
−jnωC1R2

(1 + 2jnωC1R1)(1 + jnωC2R2)
.

Therefore, if the Fourier series for the input wave is:

vin(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}
, ω =

2π

T
,

then the corresponding Fourier series for the output is:

vout(t) =
a0

2
G(0) +Re

{ ∞∑
n=1

G(jnω)An ejnωt
}

= Re

{ ∞∑
n=1

−jnωC1R2

(1 + 2jnωC1R1)(1 + jnωC2R2)
An ejnωt

}
, ω =

2π

T
.

Note that in this case, the DC response is G(0) = 0.

85



4 Matrices

4.1 Matrix Algebra

LetA be anm× nmatrix. This means thatA hasm rows and n columns of entries.

4.1.1 Addition and Subtraction

In order to add or subtract two matrices, they must have exactly the same dimensions
(both the same number of rows, and the same number of columns).(

a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g f + h

)

4.1.2 Matrix Multiplication

Matrix multiplication is a non-commutative operation. This means that A × B is not
equivalent toB × A and does not necessarily yield the same result.

Performing matrix multiplication involves the method of multiplying the entries of the
rows of the first matrix by the entries in the columns of the second matrix. For this to
be possible, the number of columns of the first matrix must equal the number of rows of
the second matrix. The dimensions of both also tell you the dimensions of the resulting
matrix. In particular, ifA is anm1 × n1 matrix, andB is anm2 × n2 matrix, then we can
performA×B if and only if n1 = m2, and the result will be am1 × n2 matrix.(

a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)

4.1.3 Scalar Multiplication

To multiply a matrix by a scalar, simply multiply each entry by that scalar.

α

(
a b
c d

)
=

(
αa αb
αc αd

)

4.1.4 Transpose

To obtain the transpose of a matrixA (denotedAT ), swap the rows and columns (or reflect
all of the elements about the diagonal).a b c

d e f
g h i

T

=

a d g
b e h
c f i


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4.1.5 Determinants

Square matrices (with dimensions n× n) have a property called the determinant. This
represents the scaling factor when the matrix is used to transform an image. The deter-
minant of matrixA can be denoted by det(A) or |A|.

4.1.5.1 Determinant of a 2× 2 Matrix

For a 2 × 2 matrix A =

(
a b
c d

)
, the determinant is very simple to calculate by

multiplying the diagonal entries:

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

Example 4.1. Given the square matrix

A =

(
3 −1

4 2

)

The determinant is given by:

det(A) = 3× 2− (−1)× 4 = 6 + 4 = 10

4.1.5.2 Determinant of a 3× 3 Matrix

For a 3 × 3 matrix, select a row or column (any will suffice, but we usually use the
top row) and multiply each of its entries by the determinant of the corresponding 2 × 2
co-matrix consisting of the rows and columns that the current entry is not in, and then
also multiply by a positive or negative sign according to the checkerboard pattern:+ − +

− + −
+ − +

 .

Therefore, given a 3× 3 matrixA =

a b c
d e f
g h i

, choosing the top row:

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ = a(ei− fh)− b(di− fg) + c(dh− eg)
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Example 4.2. Find the determinant of

A =


3 0 2

2 0 −2

0 1 1



det(A) =

∣∣∣∣∣∣∣∣
3 0 2

2 0 −2

0 1 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣0 −2

1 1

∣∣∣∣∣− (0)

∣∣∣∣∣2 −2

0 1

∣∣∣∣∣+ 2

∣∣∣∣∣2 0

0 1

∣∣∣∣∣
= 3

(
0× 1− (−2)× 1

)
− 0 + 2

(
2× 1− 0× 0

)
= 3(0 + 2) + 2(2− 0)

= 3× 2 + 2× 2

= 10

4.1.6 The Identity Matrix

For each positive integer n, the n × n identity matrix consists of one’s on the diagonal
entries and zeroes elsewhere. That is,

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


and this is the only matrix which satisfies, for a matrixA of appropriate dimensions,

AI = IA = A

So the identity acts like a matrix version of “1” in the real numbers.

4.1.7 Inverse

If a square matrixAhas non-zero determinant, then there exists a unique matrixA−1 with
the same dimensions such that

AA−1 = A−1A = I
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4.1.7.1 Inverse of a 2× 2 Matrix

For a 2× 2 matrixA =

(
a b
c d

)
with non-zero determinant (ad− bc 6= 0), the inverse

is given by:

A−1 =
1

det(A)

(
d −b
−c a

)
Example 4.3. Given the square matrix

A =

(
3 −1

4 2

)

The inverse is given by:

A−1 =
1

3× 2− (−1)× 4

(
2 −(−1)

−4 3

)
=

1

6 + 4

(
2 1

−4 3

)
=

1

10

(
2 1

−4 3

)
=

(
1/5 1/10

−2/5 3/10

)

We can check that we have obtained the correct answer by checking that AA−1 = I:(
3 −1

4 2

)
× 1

10

(
2 1

−4 3

)

=
1

10

(
3× 2 + (−1)× (−4) 3× 1 + (−1)× 3

4× 2 + 2× (−4) 4× 1 + 2× 3

)

=
1

10

(
10 0

0 10

)
=

(
1 0

0 1

)

and similarly A−1A = I.
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4.2 Eigenvalues and Eigenvectors

4.2.1 Motivation

Incomputeraideddesign(CAD),agraphicalmodelofaphysicalobjectcanbemanipulated
by applying a linear transformation to the co-ordinates of each mesh point in a wire-frame
diagram. This can be expressed in general matrix form as:

y = Ax

where x is the initial co-ordinate of a point, y is the co-ordinate it gets mapped to af-
ter the manipulation, and A encodes the action of the transformation. We use matrix
multiplication to determine y.

Example 4.4. Consider a two-dimensional graphical model to which the following

transformation matrix is applied:

A =

(
5 2

2 2

)
.

Under the action of this transformation, calculate what happens to points with various

co-ordinates:

i) x1 =

(
3

−4

)
, ii) x2 =

(
2

1

)
, iii) x3 =

(
2α

α

)

Solution:

i) y
1

= Ax1 =

(
5 2

2 2

)(
3

−4

)
=

(
15− 8

6− 8

)
=

(
7

−2

)
.

ii) y
2

= Ax2 =

(
5 2

2 2

)(
2

1

)
=

(
10 + 2

4 + 2

)
=

(
12

6

)
= 6

(
2

1

)
.

iii) y
3

= Ax3 =

(
5 2

2 2

)(
2α

α

)
=

(
10α + 2α

4α + 2α

)
=

(
12α

6α

)
= 6

(
2α

α

)
= 6α

(
2

1

)
.

In the second and third cases, the output vector has the same direction as the input

vector. In particular, any vector with the same direction as these will retain its direction

90



after the action of A (i.e. these are vectors for which the action of A does not rotate

them). The magnitude of the vector may change, but the direction is preserved.

Graphically, any point which lies on the line shown will be mapped to a point on the

same line after the transformation. This line could be regarded as a “natural direction”

or “natural axis” of the transformation.

The question is, how many such axes are there for a general transformation matrixA,
and how can we determine them systematically? Furthermore, for vectors that lie on these
axes, how will their magnitude (for points, their distance from the origin) be affected by
the action ofA? This is the eigenvalue and eigenvector problem.

In particular, we want to find the scalar values λ (called eigenvalues) and associated
column vectors x (called eigenvectors) such that:

Ax = λx

To see why these quantities are useful, we will now look at two different physical
problems, where the solution can be found from the eigenvalues and eigenvectors of a
matrix associated with the problem.
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Example 4.5 (Harmonic Oscillators). Consider three objects, each of mass m, coupled

as shown by springs of stiffness (force constant) k. Let x1, x2, x3 represent each object’s

displacement from equilibrium.

It can be shown (by combining Hooke’s law and Newton’s Second Law) that the mo-

tion of these three objects can be modelled by the following set of second-order ordinary

differential equations:

mẍ1 = k(x2 − x1)

mẍ2 = −k(x2 − x1) + k(x3 − x2)

mẍ3 = −k(x3 − x2)

We want to represent this set of ODEs as a matrix problem. To see this, first rewrite

the equations:

mẍ1 = −k
(
x1 − x2 + 0x3

)
mẍ2 = −k

(
− x1 + 2x2 − x3

)
mẍ3 = −k

(
0x1 − x2 + x3

)
We can write these equations as the rows of matrices, and then separate the right-hand-

side by constructing a matrix A of the coefficients of x1, x2, x3:
mẍ1

mẍ2

mẍ3

 =


−k
(
x1 − x2 + 0x3

)
−k
(
− x1 + 2x2 − x3

)
−k
(
0x1 − x2 + x3

)
 = −k


1 −1 0

−1 2 −1

0 −1 1



x1

x2

x3


Thus, we obtain the equivalent matrix equation for this problem:

mẍ = −kAx, where x =


x1

x2

x3

 , ẍ =


ẍ1

ẍ2

ẍ3

 and A =


1 −1 0

−1 2 −1

0 −1 1

 .
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Suppose we seek a solution of the form x = b cos(ωt) with constants ω and b =


b1

b2

b3

.

That is, xi = bi cos(ωt) for i = 1, 2, 3, so each of the masses oscillates with the same

frequency but potentially with different amplitudes.

Twice differentiating this equation for x, we obtain:

ẋ = −ωb sin(ωt)

ẍ = −ω2b cos(ωt) = −ω2x.

Using this relationship and the initial statement mẍ = −kAx, we obtain:

Ax =
−m
k

ẍ =
mω2

k
x,

and so

Ab cos(ωt) =
mω2

k
b cos(ωt)

∴ Ab =

(
mω2

k

)
b, where A =


1 −1 0

−1 2 −1

0 −1 1

 .

Therefore the values of λ = mω2

k
which satisfy this equation are the eigenvalues of matrix

A. They give the frequencies of oscillatory (harmonic) motion, and the corresponding

eigenvectors give the amplitudes of this motion b1, b2, b3. So if the problem was to

determine the possible harmonic frequencies of this vibrating system, they could be

found by:

ω =

√
λk

m
, where λ are the eigenvalues of matrix A.

Solving the eigenvalues and eigenvectors of A will thus give us b and λ from which we

can obtain ω. Therefore we will gain both pieces of information required to fully specify

the solution x = b cos(ωt) and thus fully-understand how this system behaves.

There are three frequencies of oscillatory motion and hence three modes of vibration

for this system. In a later section we will learn how to determine this.
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Example 4.6 (Circuits). Consider the electronic circuit shown.

It has the following equations associated with it, whcih define the three electric

currents:

L
di1
dt

+
1

C

∫ t

0

(i1 − i2)dt+ E1 = 0

1

C

∫ t

0

(i2 − i1)dt− E1 + L
di2
dt

+
1

C

∫ t

0

(i2 − i3)dt+ E2 = 0

1

C

∫ t

0

(i3 − i2)dt− E2 + L
di3
dt

= 0

where E1 and E2 are the initial potentials on the capacitors.

Differentiating each of these equations with respect to t, we obtain:

L
d2i1
dt2

+
1

C
(i2 − i1) = 0

L
d2i2
dt2

+
1

C

(
(i2 − i1)− (i2 − i3)

)
= 0

L
d2i3
dt2

+
1

C
(i3 − i2) = 0

and this can be represented in matrix form by:

Ld
2i

dt2
= − 1

C
Ai, where i =


i1

i2

i3

 and A =


1 −1 0

−1 2 −1

0 −1 1

 ,

and L and C are scalar constants.

Letting i = b ejωt, we can obtain Ab = λb where λ = ω2LC. This situation is

therefore mathematically very similar to the previous example, however the practical

interpretation of the eigenvalues is different.
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4.2.2 Method: Evaluation of Eigenvalues and Eigenvectors

Given a square matrix, we will now consider how we go about finding these eigenvalues
and eigenvectors.

Consider a square matrix,

A =

(
a b
c d

)
When this matrix acts on a column vector x, we obtain a new vector Ax that may be
stretched and rotated in some way. We want to find the solutions to

Ax = λx,

whereλ isascalar, sothatmatrixmultiplicationbyApreservesthedirectionofthevectorx.

For a 2 × 2 matrix A, there are two such eigenvalues λ = λ1, λ2 and their associated
eigenvectors x = e1, e2. Note that if ei is an eigenvector of A with eigenvalue λi, then so
is any scalar multiple of ei, so we can obtain a direction for the eigenvector, and then a
vector in that direction of any magnitude will suffice.

First, we re-arrange the equation to obtain (A − λI)x = 0, where I is the identity
matrix that has 1’s on the diagonal entries and 0’s elsewhere,

I =

(
1 0
0 1

)
Then in order to find the non-trivial solutions (i.e. excluding x = 0) we determine the
eigenvalues by calculating the determinant ofA−λI and solving the values of λ for which
this is zero1. That is, we solve:

Characteristic equation of matrixA: |A− λI| = 0

This will give us the characteristic polynomial (or characteristic equation) of A,
and for a 2 × 2 matrix will be a quadratic equation. Solving this gives a pair of roots
λ = λ1, λ2. For each of these, we can then obtain a corresponding non-zero eigenvector
x = e1, e2 by solving

Ax = λx or (A− λI)x = 0

for x.

1This is because the existance of such a vector is the same as the matrix A− λI being “singular”,

or not invertible, which is equivalent to having determinant zero.
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4.2.3 Examples of calculating Eigenvalues and Eigenvectors

Example 4.7 (2× 2 matrix).

Let A =

(
1 2

3 −4

)
,

then

A− λI =

(
1 2

3 −4

)
− λ

(
1 0

0 1

)
=

(
1 2

3 −4

)
−

(
λ 0

0 λ

)
=

(
1− λ 2

3 −4− λ

)
.

Therefore, we wish to solve

|A− λI| = 0 =⇒

∣∣∣∣∣1− λ 2

3 −4− λ

∣∣∣∣∣ = 0.

Since this is a 2 × 2 matrix, we find the determinant by taking the difference of the

product of the diagonals:

(1− λ)(−4− λ)− (2)(3) = 0,

and so

λ2 + 3λ− 10 = 0 (The characteristic polynomial of matrix A.)

Solving this quadratic equation yields two distinct, real, integer roots:

λ1 = −5, λ2 = 2. These are the eigenvalues of A.

Next, we solve the eigenvectors one at a time. For the first eigenvalue, λ1 = −5, let’s

call the corresponding eigenvector e1 =

(
x

y

)
. To find the values of the components x

and y, we need to solve:

Ae1 = −5e1

which means(
1 2

3 −4

)(
x

y

)
= −5

(
x

y

)
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This yields a pair of simultaneous equations:

x+ 2y = −5x

3x− 4y = −5y

These are linearly dependent (i.e. they are the same equation, just rearranged in dif-

ferent ways), and solving either of them gives y = −3x. If we choose x = 1 (and we

can, since recall that any scalar multiple of the eigenvector will work, so the important

property to preserve is the relative values of the two components), then we will get

y = −3, and so one eigenvector corresponding to λ1 = −5 is:

e1 =

(
1

−3

)
.

Similarly, the second eigenvector (corresponding to eigenvalue λ2 = 2) is

e2 =

(
2

1

)
.

Check this as an exercise.
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Example 4.8 (3×3 matrix). Consider the 3×3 matrix A that has appeared Examples

4.5 and 4.6. We will calculate the three eigenvalues and associated eigenvectors for this

matrix.

A =


1 −1 0

−1 2 −1

0 −1 1

 .

Then |A− λI| = 0 gives:∣∣∣∣∣∣∣∣
1− λ −1 0

−1 2− λ −1

0 −1 1− λ

∣∣∣∣∣∣∣∣ = 0

Recall the method of calculating determinants of 3 × 3 matrices. We select a row

or column (any will suffice, but we usually use the top row) and multiply each of its

entries by the determinant of the corresponding 2× 2 co-matrix consisting of the rows

and columns that the current entry is not in, and then also multiply by a positive or

negative sign according to the pattern:
+ − +

− + −
+ − +

 .

The resulting terms are summed to obtain the determinant.

Hence, in this case (using the top row) we have:

(1− λ)

∣∣∣∣∣2− λ −1

−1 1− λ

∣∣∣∣∣− (−1)

∣∣∣∣∣−1 −1

0 1− λ

∣∣∣∣∣+ 0

∣∣∣∣∣−1 2− λ
0 −1

∣∣∣∣∣ = 0

(1− λ)
(
(2− λ)(1− λ)− (−1)(−1)

)
+
(
(−1)(1− λ)− (−1)(0)

)
= 0

(1− λ)
(
(2− λ)(1− λ)− 1

)
− (1− λ) = 0

(1− λ)
(
(2− λ)(1− λ)− 2

)
= 0

(1− λ)(λ2 − 3λ+ 2− 2) = 0

(1− λ)(λ)(λ− 3) = 0
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Hence there are three eigenvalues: λ = 0, 1, 3.

Note: In this case, we have successfully factorised by keeping out the common

factor of (λ − 1). In general, you are not expected to solve cubic equations.

Therefore, you may be given the eigenvalues and asked to verify them. This

means that you must obtain the characteristic polynomial, and then show that

substituting in the proposed value of the eigenvalue λ satisfies the equation.

e.g. If we had multiplied out the characteristic polynomial to obtain

λ3 − 4λ2 + 3λ = 0, we could verify that λ = 3 is an eigenvalue in the

following way:

(3)3 − 4(3)2 + 3(3) = 27− 4× 9 + 9 = 27− 36 + 9 = 0

Now we must obtain the eigenvectors which correspond to each of these. For a

general value of λ and a corresponding eigenvector x, the equation (A − λI)x = 0

gives:
1− λ −1 0

−1 2− λ −1

0 −1 1− λ



x1

x2

x3

 =


0

0

0


From the components of this we obtain the following three simultaneous equations:

(1− λ)x1 − x2 = 0

−x1 + (2− λ)x2 −x3 = 0

− x2 +(1− λ)x3 = 0

Hence,

i) For the first eigenvalue λ1 = 0:

x1 − x2 = 0 (E1)

−x1 + 2x2−x3 = 0 (E2)

− x2 +x3 = 0 (E3)
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From (E1) we have x1 = x2, and from (E3) we obtain x3 = x2. This is all we need to do

in this case, but we can check the consistency of the equations by using (E4 = E2 +E1)

to eliminate x1:

x2 − x3 = 0 (E4)

and so we see that (E4) is just the same as (E3).

Then we let x2 = α, where α is just an arbitrary constant, and use the previous results

to obtain both other co-ordinates in terms solely of α:

x1 = x2 = α, and x3 = x2 = α.

Hence we have the eigenvector

x1 = α


1

1

1

 .

As before, this represents an infinite set of eigenvectors that all have the same direction

but can be of any non-zero magnitude.

ii) λ2 = 1:

− x2 = 0 (E1)

−x1 + x2−x3 = 0 (E2)

− x2 = 0 (E3)

Clearly (E1) and (E3) are identical and give x2 = 0.

Substituting this result into (E2) then yields x3 = −x1 or x1 = −x3.

Therefore let x1 = β (an arbitrary constant) to obtain:

x2 = β


1

0

−1


iii) λ3 = 3:

−2x1 − x2 = 0 (E1)

−x1 − x2 −x3 = 0 (E2)

− x2−2x3 = 0 (E3)
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Eliminate x1 from (E2) using (E4) = 2(E2)− (E1):

−x2 − 2x3 = 0 (E4)

and then eliminate x2 from (E3) using (E5) = (E3)− (E4). As expected, this results in

the tautology:

0 = 0 (E5)

Then from (E4): x2 = −2x3, and from (E1): x1 = −1
2
x2 = x3. Therefore let x3 = γ,

and we obtain x2 = −2γ and x1 = γ, so that the eigenvector is:

e3 = γ


1

−2

1


The complete solution to the problem is therefore:

λ1 = 0, e1 = α


1

1

1

 ; λ2 = 1, e2 = β


1

0

−1

 ; λ3 = 3, e3 = γ


1

−2

1


You can verify the solutions by calculating the matrix multiplications Ae1, Ae2, Ae3

and checking that we get the product of the corresponding eigenvalue and eigenvector

each time.

4.2.4 Calculating using MATLAB

MATLAB can automatically determine the eigenvalue and eigenvector pairs of a square
matrix for you, using the Symbolic Math Toolbox:

A = [1 2; 3 -4];

B = sym(A);

[M,S] = eig(B);
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4.2.5 Unit Vectors

It is sometimes useful to consider “normalised” or “unit” vectors. These have magnitude
(size) equal to 1. To normalise a vector, we find its magnitude and then divide the vector
by this scalar value. The direction is unchanged, so the components in each direction will
still have the same ratio.

A unit vector is one that has magnitude equal to one. Given any vector, v we can
find a unit vector in the same direction by:

v̂ =
v

|v|

Example 4.9. Consider the eigenvectors we found in Example 4.7. The first eigen-

vector is:

e1 =

(
1

−3

)

Therefore it has magnitude:

|e1| =
√

(1)2 + (−3)2 =
√

1 + 9 =
√

10

So a unit vector in the same direction as e1, which we denote by ê1 is:

ê1 =
e1

|e1|
=

1√
(1)2 + (−3)2

(
1

−3

)
=

1√
10

(
1

−3

)
.

Similarly, the second normalised eigenvector is

ê2 =
e2

|e2|
=

1√
(2)2 + (1)2

(
2

1

)
=

1√
5

(
2

1

)
.
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4.3 State Variable Description

Next we look at representing the control equations for a system in a form to which we can
then apply the above matrix and eigenvalue analysis. In particular, we use a technique
known as state-space representation.

4.3.1 Theory

• The goal here is to: reduce ordinary differential equation (ODE) initial
value problems of order n to a set of n first-order ODEs.

• We accomplish this by defining a new set of variables called state variables. Every
variable in the original problem, apart from external inputs, generates an additional
state variable for each derivative. For example, a variable whose second-derivative
occurs in the equations will generate two state variables.

• Wethenrearrangetoobtainasetofequations for thederivativeofeachstatevariable,
in terms only of the state variables and the external inputs.
This is the state variable description of the system:

ẋ = Ax +Bu

where ẋ is a vector containing the time-derivatives of the state variables, x is a
vector containing the state variables themselves, and the external control inputs are
encoded in their own vectorBu.

• If there is no control input for the problem, the state variable description is just:

ẋ = Ax

• We may also choose to define some output measurements, and then define an output
vector y which would usually encode both the control inputs and the measured
outputs, constructed from a linear combination of the state variable and control
input vectors in a similar manner to the state variable description:

y = Cx +Du
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4.3.2 Examples

Example 4.10. Determine the state variable description of the circuit shown.

The currents in this circuit are determined by solving a pair of ODEs:

di1
dt

= − i1
CR
− di2

dt
+

1

R

de

dt

d2i2
dt2

= −R
L

di2
dt

+
i1
LC

where L, C and R are positive constants and e(t) is an external input.

This description involves both first and second derivatives, and is in effect a third-order

system. We can introduce new dependent variables and reformulate the equations, so

that the circuit can be modelled using first derivatives only.

Dependent variable i1 is differentiated once in the above equations, so it generates

one state variable.

Dependent variable i2 is differentiated twice, and so generates two state variables.

Therefore we define:

x1 ≡ i1, x2 ≡ i2, x3 ≡
di2
dt

and differentiating these:

dx1

dt
=
di1
dt
,

dx2

dt
=
di2
dt
,

dx3

dt
=
d2i2
dt2

.

Then we want to obtain a set of equations for the derivative of each

state variable, in terms only of the state variables, and not featuring any

104



derivatives.

Using the original equations, we obtain:

dx1

dt
= − x1

CR
− x3 +

1

R

de

dt

dx2

dt
= x3

dx3

dt
= −R

L
x3 +

x1

LC

Any set of linear ODEs can be manipulated into this form, called canonical form, of

first order ODEs written explicity as

dxi
dt

= f(x1, x2, x3)

To see how we can represent this set of equations in matrix form, and obtain the

decomposition in terms of a state variable vector and a control vector, we need to

rewrite them with the coefficients of all state variables (including zeros) in the correct

order (x1, then x2, then x3):

dx1

dt
= − 1

CR
x1 + 0x2 − x3 + 1× 1

R

de

dt

dx2

dt
= 0x1 + 0x2 + 1x3 + 0× 1

R

de

dt

dx3

dt
=

x1

LC
+ 0x2 −

R

L
x3 + 0× 1

R

de

dt

Then putting these equations as the rows of a matrix and decomposing:
ẋ1

ẋ2

ẋ3

 =


− 1
CR
x1 + 0x2 − x3 + 1× 1

R
de
dt

0x1 + 0x2 + 1x3 + 0× 1
R
de
dt

x1
LC

+ 0x2 − R
L
x3 + 0× 1

R
de
dt



=


− 1
CR
x1 + 0x2 − x3

0x1 + 0x2 + 1x3

x1
LC

+ 0x2 − R
L
x3

+


1× 1

R
de
dt

0× 1
R
de
dt

0× 1
R
de
dt



=


−1
CR

0 −1

0 0 1
1
LC

0 −R
L



x1

x2

x3

+


1

0

0

( 1
R
de
dt

)
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Which can be stated as:

ẋ = Ax +Bu

where

x =


x1

x2

x3

 , A =


− 1
CR

0 −1

0 0 1
1
LC

0 −R
L

 , B =


1

0

0

 , u =
(

1
R
de
dt

)

The column vector x is the vector of state variables, and ẋ = Ax +Bu is the state

variable description or state variable equations of the electronic system. In

particular, Ax can represent the internal feedback (or internal control) of the system,

while Bu encodes the single external “control”.
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Example 4.11. Determine the state variable description of the following circuit:

It has the following set of equations. R, C, and L are constants, whilst e(t), v(t),

i1(t) and i2(t) are time-dependent variables.

e(t) = L
di1(t)

dt
+

1

C

∫ t

0

(i1(t)− i2(t))dt

1

C

∫ t

0

(
i2(t)− i1(t)

)
dt+Ri2(t) + L

di2(t)

dt
+

1

C

∫ t

0

i2(t)dt = 0

v(t) =
1

C

∫ t

0

i2(t)dt

and the output is given by:

z = L
di2
dt

Before introducing the state variables, differentiate these equations to remove the inte-

grals. This yields:

de

dt
= L

d2i1
dt2

+
1

C
(i1 − i2)

1

C
(i2 − i1) +R

di2
dt

+ L
d2i2
dt2

+
1

C
i2 = 0

dv

dt
=

1

C
i2

Then rearranging,

d2i1
dt2

= − 1

LC
i1 +

1

LC
i2 +

1

L

de

dt

d2i2
dt2

=
1

LC
i1 −

2

LC
i2 −

R

L

di2
dt

dv

dt
=

1

C
i2

107



The dependent variables i1 and i2 are each differentiated twice, and so generate two

state variables each. v is differentiated only once, so it generates an additional one

state variable. Therefore, we define the five state variables x1, . . . , x5:

x1 ≡ i1, x2 ≡
di1
dt
, x3 ≡ i2, x4 ≡

di2
dt
, x5 ≡ v.

We differentiate each of these equations,

dx1

dt
=
di1
dt
,

dx2

dt
=
d2i1
dt2

,
dx3

dt
=
di2
dt
,

dx4

dt
=
d2i2
dt2

,
dx5

dt
=
dv

dt

and then substitute in the original equations to obtain equations for dxi
dt

in terms of xi:

dx1

dt
= x2

dx2

dt
= − 1

LC
x1 +

1

LC
x3 +

1

L

de

dt

dx3

dt
= x4

dx4

dt
=

1

LC
x1 −

2

LC
x3 −

R

L
x4

dx5

dt
=

1

C
x3

and we have z = Lx4 as a measured output.

The state variable description is therefore:

ẋ = Ax +Bu

where

A =



0 1 0 0 0
−1
LC

0 1
LC

0 0

0 0 0 1 0
1
LC

0 −2
LC

−R
L

0

0 0 1
C

0 0


, x =



x1

x2

x3

x4

x5


, B =



0

1

0

0

0


, u =

(
1
L
de
dt

)
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The outputs can also be assembled into a vector.

There is one true output z = Lx4 and the control input is 1
L
de
dt

. Therefore the out-

put vector, which encodes both of these, is:

y =

(
z

1
L
de
dt

)
=

(
Lx4

1
L
de
dt

)
=

(
Lx4

0

)
+

(
0

1
L
de
dt

)

=

(
0x1 + 0x2 + 0x3 + Lx4 + 0x5

0x1 + 0x2 + 0x3 + 0x4 + 0x5

)
+

(
0× 1

L
de
dt

1
L
de
dt

)

=

(
0 0 0 L 0

0 0 0 0 0

)


x1

x2

x3

x4

x5


+

(
0

1

)(
1
L
de
dt

)

or

y = Cx +Du

where

C =

(
0 0 0 L 0

0 0 0 0 0

)
, x =



x1

x2

x3

x4

x5


, D =

(
0

1

)
, u =

(
1
L
de
dt

)
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Example 4.12. A control system is modelled by the following fourth-order ordinary

differential equation:

d4x

dt4
+ a3

d3x

dt3
+ a2

d2x

dt2
+ a1

dx

dt
+ a0x = 0

where x(t) is a scalar and is the output of the system. Note that there is no external

control input in this example.

As before, we seek to define the state variables and obtain the state variable description,

as well as determining a suitable output vector y. In the case of a system described

by a single nth order ordinary differential equation without external control, the state

equations will be of the form ẋ = Ax and A will have special properties.

The dependent variable x is differentiated four times, so it generates four state vari-

ables:

x1 ≡ x, x2 ≡
dx

dt
, x3 ≡

d2x

dt2
, x4 ≡

d3x

dt3

Differentiating,

dx1

dt
=
dx

dt
,

dx2

dt
=
d2x

dt2
,

dx3

dt
=
d3x

dt3
,

dx4

dt
=
dx4

dt4

and so we obtain equations for dxi
dt

in terms of xi:

dx1

dt
= x2

dx2

dt
= x3

dx3

dt
= x4

dx4

dt
= −a0x1 − a1x2 − a2x3 − a3x4

This set of equations is the state variable description of the control system, and may be
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written as ẋ = Ax (as there no control input, there is therefore no Du term), where:

A =


0 1 0 0

0 0 1 0

0 0 0 1

−a0 −a1 −a2 −a3

 , x =


x1

x2

x3

x4


This form of matrix A is called companion form, that is A is a companion matrix.

A companion matrix A consists of 1’s in the entries that are one above the

diagonal, any real numbers in the bottom row entries, and zeros elsewhere. This

is a standard feature of A when ẋ = Ax is obtained from a single nth order ODE.

The output, as specified, is the original variable x which is identical to the state

variable x1. There is no input, and so the vector output is:

y =
(
x
)

=
(
x1

)
=
(

1x1 + 0x2 + 0x3 + 0x4

)
=
(

1 0 0 0
)

x1

x2

x3

x4

 = Cx

where C =
(

1 0 0 0
)

and x =


x1

x2

x3

x4


As with the state variable description, the absence of control input means there is no

Du term in the output.
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4.3.3 Solution of State Variable Equations (without external control)

In some examples in the previous section, we considered equations of the form ẋ = Ax,
and sought a solution of the x = ekt b where k is an unspecified scalar constant and b
is an unspecified vector constant. (Note: in some examples we sought solutions in the
trigonometric form x = b cos(kt) or x = b sin(kt). Using the exponential form is a more
general version of the same approach.)

Substituting this solution into the differential equation leads to the result that k must
be an eigenvalue ofA and b is the corresponding eigenvector.

From each eigenvalue and eigenvector pair, we can find one of the modes (eigenmodes):

x(t) = ci bi e
λit where ci is any scalar.

These time-dependent functions describe natural vibrations of the system where all parts
move at the same frequency.

“Solving” a system means obtaining a function for the state variables x, so that if we
know some initial conditions (where the system starts) then we can find the value of all of
the state variables at any given time. Adding together the eigenmodes of the state variable
matrix, scaled by some particular constants, gives the full solution to the system without
accounting for external controls (i.e. the solution to ẋ = Ax without a control vector u).
However, to actually find the choice of constants necessary, and thus truly solve the ODE
system, we will need to use the diagonalisation technique in the next section.

x(t) =
n∑
i=1

ci bi e
λit but we don’t know what the ci’s should be!

Example 4.13. The state variables for a certain electronic system are given by:

ẋ = Ax, where A =

(
5 2

2 2

)
.

To determine the modes of this system, recall from a previous example that the eigen-

value and eigenvector pairs for A are:

λ1 = 1, b1 = α

(
1

−2

)
; λ2 = 6, b2 = β

(
2

1

)
Therefore there are two modes:

x1 = et

(
1

−2

)
; x2 = e6t

(
2

1

)
or any scalar multiples of each of these.
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4.4 Solving systems of linear first order ODEs

Consider the first-order linear ODE

dx

dt
= kx

where k is a constant and the initial condition x(0) = x0 is known. The solution to this
initial value problem (e.g. obtained using Laplace Transforms) is

x(t) = x0 ekt

Now consider a system of multiple such ODEs:

ẋ = Ax

From our experience with the scalar problem above, we extend that result to specify the
solution to this vector problem formally as:

x(t) = eAt x(0)

However, in this case eAt is a matrix (known as the exponential matrix or state
transition matrix) and cannot be obtained as a single application of the exponential
function.

The problem then, is how to determine this state transition matrix eAt. It is obtained
using a diagonalisation process involving a modal matrix T ofA.

Given an n× nmatrixA, the modal matrix T is constructed column-by-column
using the eigenvectors ofA:

T =
(
e1, e2, . . . , en,

)
where each vector ei is a single column ofnvalues and is the ith eigenvector ofA. The
actual ordering of eigenvectors is not important so long as the ordering always
matches with the corresponding eigenvalues.

Note that there are infinitely many choices of modal matrix T , since in addition to the
order of the eigenvectors being interchangable, the eigenvectors themselves are not unique
as we have seen. This means that each column of a modal matrix of A could be scaled
separately (e.g. multiply every element of the first column by 5, and every element of the
second column by -3.1 etc...) and we would obtain another matrix that is still a modal
matrix ofA.
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4.4.1 Method: Solving systems of ODEs using Diagonalisation

Given a system of n linear first-order ODEs formulated as ẋ = Ax, where A is a square
n× nmatrix:

1. Obtain the eigenvalues λ1, . . . , λn and eigenvectors e1, . . . , en ofA.

2. Construct the diagonal matrix of eigenvaluesD = diag(λ1, λ2, . . . , λn) and then×n
modal matrix T where the ith column consists of the eigenvector ofA corresponding
to the eigenvalue in the ith diagonal entry ofD. Thus,

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 and T =
(
e1, . . . , en

)

3. Construct the diagonal matrix of exponentials eDt = diag(eλ1t, eλ2t, . . . , eλnt). So,

eDt =


eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


4. Perform two matrix multiplications to calculate:

eAt = T eDt T−1

5. The solution is given by the matrix multiplication:

x(t) = eAt x(0)
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4.4.2 Examples: Solving systems of ODEs using Diagonalisation

Example 4.14 (Second-order). A simple continuous-time model of population dynam-

ics for two species is given by:

ẋ = Ax, where A =

(
5 2

2 2

)
with initial conditions x(0).

The eigenvalue and eigenvector pairs of A are:

λ1 = 1, b1 = α

(
1

−2

)
; and λ2 = 6, b2 = β

(
2

1

)

Thus, we take the modal matrix of A to be: T =

(
1 2

−2 1

)
, and set D = diag(1, 6).

Therefore,

eDt = diag(et, e6t) =

(
et 0

0 e6t

)

Inverting, we find that

T−1 =
1

(1)(1)− (2)(−2)

(
1 −2

2 1

)
=

1

5

(
1 −2

2 1

)

Then performing matrix multiplication,

T eDt =

(
1 2

−2 1

)(
et 0

0 e6t

)
=

(
et 2 e6t

−2 et e6t

)

Therefore,

eAt = (T eDt)T−1 =
1

5

(
et 2 e6t

−2 et e6t

)(
1 −2

2 1

)

=
1

5

( (
et +4 e6t

) (
− 2 et +2 e6t

)(
− 2 et +2 e6t

) (
4 et + e6t

) )

Now, x(t) = eAt x(0), and so:(
x1(t)

x2(t)

)
=

1

5

( (
et +4 e6t

) (
− 2 et +2 e6t

)(
− 2 et +2 e6t

) (
4 et + e6t

) )(
x1(0)

x2(0)

)
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That is,

x1(t) =
1

5

{(
et +4 e6t

)
x1(0) +

(
− 2 et +2 e6t

)
x2(0)

}
x2(t) =

1

5

{(
− 2 et +2 e6t

)
x1(0) +

(
4 et + e6t

)
x2(0)

}
Example 4.15 (Third-order). An electronic control system is described by the following

set of state variable equations:

dx1

dt
= x2,

dx2

dt
= x3,

dx3

dt
=

9

2
x1 −

7

2
x3

We use the process of diagonalisation to obtain the state transition matrix and hence

obtain solutions for x1, x2, x3.

First, note that we may write these three first-order ODEs in the form ẋ = Ax, where:

x =


x1

x2

x3

 , A =


0 1 0

0 0 1
9
2

0 −7
2


and we can obtain the eigenvalues and eigenvectors of A:

λ1 = 1, b1 = α


1

1

1

 ; λ2 = −3, b2 = β


1

−3

9

 ; λ3 = −3

2
, b3 = γ


4

−6

9

 ;

Hence, define the modal matrix of A and calculate its inverse:

T =


1 1 4

1 −3 −6

1 9 9

 , =⇒ T−1 =
1

60


27 27 6

−15 5 10

12 −8 −4


We also define the diagonal matrices

D = diag(1,−3,−3/2) and eDt = diag(et, e−3t, e−3t/2)
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Twice performing matrix multiplication,

eAt = T eDt T−1

=
1

60


1 1 4

1 −3 −6

1 9 9




et 0 0

0 e−3t 0

0 0 e−3t/2




27 27 6

−15 5 10

12 −8 −4



=
1

60


(
27 et−15 e−3t +48 e−3t/2

) (
27 et +5 e−3t−32 e−3t/2

) (
6 et +10 e−3t−16 e−3t/2

)(
27 et +45 e−3t−72 e−3t/2

) (
27 et−15 e−3t +48 e−3t/2

) (
6 et−30 e−3t +24 e−3t/2

)(
27 et−135 e−3t +108 e−3t/2

) (
27 et +45 e−3t−72 e−3t/2

) (
6 et +90 e−3t−36 e−3t/2

)


Then the solution is x(t) = eAt x(0), where x(0) =


x1(0)

x2(0)

x3(0)

, and so finally we obtain:

x1(t) =
1

60

{ (
27 et −15 e−3t +48 e−3t/2

)
x1(0) +(

27 et +5 e−3t−32 e−3t/2
)
x2(0) +

(
6 et +10 e−3t−16 e−3t/2

)
x3(0)

}
x2(t) =

1

60

{ (
27 et +45 e−3t−72 e−3t/2

)
x1(0) +(

27 et −15 e−3t +48 e−3t/2
)
x2(0) +

(
6 et−30 e−3t +24 e−3t/2

)
x3(0)

}
x3(t) =

1

60

{ (
27 et −135 e−3t +108 e−3t/2

)
x1(0) +(

27 et +45 e−3t−72 e−3t/2
)
x2(0) +

(
6 et +90 e−3t−36 e−3t/2

)
x3(0)

}
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5 What do I need to be able to do?

5.1 Laplace Transforms

• Confidently use tables to find Laplace transforms and inverse transform.

• Understand how to construct piecewise functions by combining step functions.

• Putting functions into Delay Form and taking Laplace transforms of these using the
Delay Theorem:

L{g(t− T )U(t− T )} = e−sTL{g(t)}

• Inverting Laplace transforms involving a delay.

• Solving differential and integral equations (that may include discontinuities) using
Laplace transforms.

• Obtain the Transfer Function for a linear system, given a set of ODEs:

G(s) =
v̄o(s)

v̄i(s)

• Identify the Characteristic Equation, determine the order, and interpreting the
stability of the system. It is stable if all solutions of the characteristic equation
Q(s) = 0 have negative real partRe(s) < 0.

• Determinenature/typeofafilterbyestimatingthe lowandhighfrequencybehaviour
and sketching the Amplitude Bode Plot.

• Understand how convolution integrals can be used to obtain solutions for the output
signal.

5.2 Fourier Analysis

• Generalised sine and cosine functions, angular frequency and phase angle.

• Definition of Fourier series:

f(t) =
a0

2
+
∞∑
n=1

an cos(nωt) +
∞∑
n=1

bn sin(nωt)

• Understand DC level, fundamental, harmonics:
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– a0
2

is the DC level of f(t). It is the average value of the signal over one full
cycle.

– a1 cos(ωt) + b1 sin(ωt) is the first harmonic, also called the Fundamental
mode.

– an cos(nωt) + bn sin(nωt) is the nth Harmonic. It has angular frequency nω,
which is n times the angular frequency of the fundamental.

• Understand the core idea of Fourier Series: approximating a periodic function by
the partial sums of harmonics. The more terms used, the better the approximation.

• Understand the concept of Odd and Even functions, and be able to use their rele-
vance to Fourier Series:

(a) If f(t) is an even function, then bn = 0 ∀ n ∈ N.
(b) If f(t) is an odd function, then an = 0 ∀ n ∈ N.

• The complex form of Fourier series:

f(t) =
a0

2
+Re

{ ∞∑
n=1

An ejnωt
}

• Determining the complex Fourier coefficient (phasor) using the Laplace transform
method:

An =
2

T
ḡ(jnω)

where

g(t) =


f(t) for 0 < t < T ,

0 otherwise.

• Using the frequency response functionG(jnω) of a linear systemtocalculatephasors
of the output given a particular input signal:

Vn = G(jnω)An

• Also be able to find the DC level of the output signal, given the frequency response
function of the system and the DC level of the input signal:

G(0)× a0

2

• Determine amplitude and phase distortion.

• Know how the real/regular Fourier coefficients an and bn can be obtained from the
phasor of the harmonics. SinceAn = an − jbn,

an = Re
{
An
}
, and bn = −Im

{
An
}
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5.3 Matrix Algebra

• Know what the identity matrix I is.

• Determine the characteristic equation of a square matrixA:

det(A− λI) = 0

• Calculating eigenvalues and eigenvectors of a 2× 2 and 3× 3 square matrix.

• Verifying solutions to cubic polynomials to confirm that a number is an eigenvalue
given the characteristic equation.

• Define the state variables for a set of mixed-order ODEs.

• Derive the state variable equations in the form:

ẋ = Ax +Bu,

and (when appropriate) find a suitable output vector in the form:

y = Cx +Du

• Determine the natural modes (eigenmodes) of a system from the eigenvalues and
eigenvectors.

• Understand the definition of modal matrix, and be able to construct one from the
eigenvectors of a square matrix.

• Use the diagonalisation process to obtain the state transition matrix. Know and use
the result:

eAt = T eDt T−1

• Obtain individual state variables using:

x = eAt x(0)
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5.4 General notes on what will not be tested:

• Circuit analysis. Many of the examples are given in the context of analysing the
potential differences of electronic circuits. This is just one possible application of
these methods, and is shown to help you see how we would use the method. Circuits
themselves are not part of this section of the module, which is about mathematical
methods, and so if such a question should appear in assessment then the equations
for analysis will be provided.

• EXCEL and MATLAB programming.

• Obtaining Fourier coefficients by the integration method (although it is good to be
aware of this as it is the most common method):

a0 =
2

T

∫ T

0

f(t)dt

an =
2

T

∫ T

0

f(t) cos(nωt)dt

bn =
2

T

∫ T

0

f(t) sin(nωt)dt
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6 Appendix 1: Revision

6.1 Polynomial Functions

A polynomial function of x consists of a linear combination of terms that only include
non-negative integer powers of x. Therefore they take the form:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

where the coefficents a0, a1, . . . can take any real scalar value.

6.1.1 Quadratic functions

A quadratic function is a second-order polynomial, f(x) = ax2 +bx+c. When we consider
potentially complex solutions, f has precisely two roots, which are the values of x such
that f(x) = 0. They are found using the quadratic equation:

x =
−b±

√
b2 − 4ac

2a

where b2 − 4ac is the discriminant. Its value determines the nature of the solutions:

b2 − 4ac


= 0 =⇒ One real, repeated root.
< 0 =⇒ No real roots. The solutions are a complex conjugate pair.
> 0 =⇒ Two real, distinct roots.

6.1.1.1 Completing the Square Sometimes a quadratic expression cannot be fac-

torised in the usual way. However, we can re-write it as a multiple of the form (x+α)2 +β,
and it may then be useful in some circumstances to write it as (x + α)2 + γ2 if β > 0. In
order to do this for f(x) = ax2 + bx + c, first factor out the coefficient of x2, then α will
be half of the coefficent of x, and since we will have added an additional term equal to the
square of α, we need to account for that by removing it.

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)

= a

{(
x+

b

2a

)2

+
c

a
−
(
b

2a

)2}

= a

{(
x+

b

2a

)2

+

(√
c

a
−
(
b

2a

)2)2}
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Example 6.1. Complete the square for the quadratic expression x2 + 6x+ 34:

x2 + 6x+ 34 =

(
x+

6

2

)2

+ 34−
(

6

2

)2

= (x+ 3)2 + 34− 9

= (x+ 3)2 + 25

= (x+ 3)2 + (5)2

6.2 Partial Fractions

This is a method of expanding fractions that have a polynomial on the denominator that
can be factorised, and obtaining a linear combination of simpler fractions that are easier
to work with. The form of the expansion depends on the nature of the fraction, but there
are three main possibilities:

• All linear terms in the denominator:

7x− 1

(x+ 2)(x− 3)
=

A

x+ 2
+

B

x− 3

• Repeated term in the denominator:

2x2 + 5x− 13

(x+ 5)(x− 4)2
=

A

x+ 5
+

B

x− 4
+

C

(x− 4)2

• x2 in the denominator (make sure to check for common factors on the numerator and
denominator first):

4x2 − 7x+ 17

(x− 5)(x2 + 7)
=

A

x− 5
+
Bx+ C

x2 + 7

When we have determined the appropriate layout of the expansion, multiply both sides of
the equation by all of the denominator terms.

Finally, we obtain the values of the constants from the resulting equation either by choos-
ing specific values of x so that the results drop out, or by equating the coefficients of x0,
x1, x2, etc.
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6.3 Integration by Parts∫
u
dv

dt
dt = uv −

∫
v
du

dt

Integration by parts is particularly useful for integrals involving the product of a poly-
nomial function and an exponential or trigonometic function. Sometimes multiple ap-
plications will be necessary. A key point is in the selection of u and dv

dt
. In particular,

if there is a polynomial (non-negative exponents), always choose it as u, since repeated
differentiation will eventually “get rid” of it.

6.4 Complex Exponentials

Recall that j is the imaginary number, defined as:

j =
√
−1

Hence j2 = −1, and more generally j2n = −1 and j2n+1 = (−1)nj.

6.5 Drawing Waveforms by hand

You should also be able to draw a general sine or cosine function by hand. This involves
(and demonstrates) an understanding of the role that the amplitude, angular frequency,
phase angle and vertical shift play. Given the functionA sin(ωt+φ)+d (or a similar cosine
function), we can use the following systematic method:

1. Identify the amplitudeA.

2. Identify the period T = 2π/ω.

3. Draw the sine (or cosine) wave rescaled byA and T .

4. Shift the wave left by φ/(2π) fraction of a cycle.

5. Shift the wave up by d.

It is important thatpoint2. and3. are carriedoutbeforepoints 4. and5. in thisprocedure.
Consider the following example:

Example 6.2. Draw y = 5 sin

(
t
2

+ π
2

)
− 1.

1. Comparing this with A sin(ωt + φ) + d, the amplitude A = 5 and so the initial

wave (ignoring the vertical shift) will oscillate between −5 and +5.

2. ω = 1
2
, so the period is T = (2π)/(1/2) = 4π.
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3. Hence, for the intermediate plot, we draw a sine wave rescaled to oscillate between

−5 and +5 and with period 4π.

4. φ = π
2
, and so φ/(2π) = π

2
÷ 2π = 1

4
. Hence, the waveform must now be shifted

to the left by one quarter of a cycle.

5. Finally, d = −1, so the wave is shifted vertically down by 1. This final form is

shown in the last figure.

(a) y = sin(x) (b) y = 5 sin(x/2) (c) y = 5 sin
(
x/2 + π/2

)
− 1

Figure 9: Stages of drawing y = 5 sin
(
x/2 + π/2

)
− 1

We can check this by plotting the graph in MATLAB.
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7 Appendix 2: Extra Material
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7.1 Chapter 1: Laplace Transforms

7.1.1 Additional Example from First Principles

An additional example of deriving the Laplace transform of a function from the integral
defintion.

Example 7.1. Derive the Laplace transform of

f(t) =

{
0 for t < 0;

t for t > 0.

f̄(s) = L{f(t)} =

∫ ∞
0

e−st f(t)dt =

∫ ∞
0

t e−st dt

=

[
−1

s
e−st t

]∞
0

−
∫ ∞

0

(
−1

s

)
e−st 1dt by Integration by Parts, with u = t,

dv

dt
= e−st

=

[
−1

s
e−st t

]∞
0

−
[

1

s2
e−st

]∞
0

=

({
−1

s
0

}
−
{
−1

s
0

})
−
({

1

s2
0

}
−
{

1

s2
1

})
provided s > 0

f̄(s) =
1

s2
for s > 0

Example 7.2. Consider the Laplace transform of

f(t) =

{
0 for t < 0;

et
2

for t > 0.

In this case,

f̄(s) = L{f(t)} =

∫ ∞
0

e−st f(t)dt =

∫ ∞
0

e−st et
2

dt

From previous examples, we know that to obtain a well-defined solution, we require the

decaying exponential to dominate the integrand expression. That is f̄(s) will be defined

only for finite values of s such that e−st et
2

= e−st+t
2

= e−t(s−t) is a decaying integral.

Hence we require s such that t(s − t) > 0, so since t > 0 we need s − t > 0 and thus

s > t is required for all values of t. However, t ranges between zero and infinity, so no

finite value of s will satisfy this condition.
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7.1.2 Existence of the Laplace Transform

The previous example illustrates that the Laplace transform is not well-defined for all
functions. In particular, a sufficient condition to ensure that a function f(t) has a Laplace
transform is that there exists a constant α and some positive constants t0 and M , such
that:

|f(t)| < M eαt for all t > t0

This describes a function of “exponential order”, which means that its rate of growth is
not faster than that of exponential functions. Technically, we may also require that there
are only finitely many points of discontinuity in any finite interval of the domain, but this
condition will be satisfied by any function you may practically be asked to consider.

7.1.3 Proof of the Linearity of Laplace Transforms

Proving that the Laplace transform is a linear operator is very simple, and relies on the
fact that integration is also linear (i.e. the integral of a linear combination of terms is equal
to the same combination of their individual integrals).

Proof. Let f, g be time-dependent functions and let a, b be scalar constants.

L{af(t) + bg(t)} =

∫ ∞
0

e−st(af(t) + bg(t))dt =

∫ ∞
0

a e−st f(t) + b e−st g(t)dt

=

∫ ∞
0

a e−st f(t)dt+

∫ ∞
0

b e−st g(t)dt

= a

∫ ∞
0

e−st f(t)dt+ b

∫ ∞
0

e−st g(t)dt

= aL{f(t)}+ bL{g(t)}

7.1.4 Amplitude Bode Plots

In this course, we calculate very rough approximations to the amplitude bode plot. The
full method of constructing one is quite involved, and an example is shown here. Given
a transfer function G(s), it will typically consist of a ratio of polynomials, which we can
factorise. For example, consider the following:

G(s) =
4× 103(5 + s)

s(100 + s)(20 + s)
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We can see that both the numerator and the denominator are factorised polynomials.
Next, we need to express this in standard form, which means that each factor needs to be
rewritten as (1 + τs):

G(s) =
10(1 + 0.2s)

s(1 + 0.01s)(1 + 0.05s)

Then make the substitution s = jω:

G(jω) =
10(1 + 0.2jω)

jω(1 + 0.01jω)(1 + 0.05jω)

Engineers typically use amplitude gain in decibels, so take 20 times the logarithm to base
10:

20 log |G(jω)| = 20 log

∣∣∣∣ 10(1 + 0.2jω)

jω(1 + 0.01jω)(1 + 0.05jω)

∣∣∣∣
The advantage of logs is that this function can be expressed by adding and subtracting
each of these zeros (values ofω that are roots of the numerator) and poles (values ofω that
are roots of the denominator).

20 log |G(jω)| = 20 log(10)+20 log |1+j0.2ω|−20 log |jω|−20 log |1+0.01jω|−20 log |1+0.05jω|

We can plot the amplitude gain from each of these terms separately, and then construct
the final plot by adding them all together. There are five kinds of term involving simple
(multiplicity one) poles and zeros:

(a) For a simple gain k, a plot of 20 log(k) is just a horizontal straight line. It is above
0dB if k > 1, and below otherwise.

(b)Forasimplezeroattheorigin,aplotof20 log(ω) isastraightlinewithslope20dB/decade
that intersects 0dB at ω = 1.

(c) For a simple pole at the origin, a plot of −20 log(ω) is a straight line with slope -
20dB/decade that intersects 0dB at ω = 1.

(d) For a simple zero not at the origin, a plot of 20 log(1 + jωτ) can be approximated
by two parts. Zero for ω < 1/τ and a straight line with slope 20dB/decade that intersects
0dB at ω = 1/τ for ω > 1/τ .

(e) For a simple pole not at the origin, a plot of−20 log(1 + jωτ) can be approximated by
two parts. Zero for ω < 1/τ and a straight line with slope -20dB/decade that intersects
0dB at ω = 1/τ for ω > 1/τ .
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These are shown in the figure below. Note that the absolute value of the slopes are the
same in all cases.

(a) Constant gain

(b) Zero at the origin (c) Pole at the origin

(d) Zero not at the origin (e) Pole not at the origin

Figure 10: Approximate amplitude bode plot contributions from simple poles and zeros

Let’s return to our example. In this case, we have a constant gain of 20dB, a simple zero
with breakpointω = 1/0.2 = 5rad s−1, and three simple poles - one at the origin, and two
others with breakpoints at the following frequencies respectively: ω = 100rad s−1 and
ω = 20rad s−1. We plot these five contributions on the same diagram (dotted lines), and
then the approximate final amplitude is obtained by the summation of the values along
the plot.
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Figure 11: Approximate amplitude bode plot contributions from simple poles and zeros

So this example is a third order (three poles) low-pass filter.

In some cases, we can also determine the type of filter directly from the transfer function
if it exactly matches certain known forms. For a first-order system (k is some constant):

G(s) = 1
1+ks

is a low-pass filter.

G(s) = ks
1+ks

is a high-pass filter.

G(s) = 1−ks
1+ks

is an all-pass filter.

For second-order systems where a, b, c, d are constants:

G(s) = c
s2+as+b

is a low-pass filter.

G(s) = cs2

s2+as+b
is a high-pass filter.

G(s) = cs
s2+as+b

is a band-pass filter.

G(s) = cs2+d
s2+as+b

is a band-eliminate filter.

G(s) = s2−cs+d
s2+as+b

is an all-pass filter.
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7.2 Chapter 2: Fourier Series

7.2.1 Orthogonality

How do we know how to calculate the Fourier coefficients an and bn by integration?

The key idea that these results rely on on is the orthogonality of sines and cosines of
different frequencies, which means’:∫ T/2

−T/2
cos(nωt) sin(nωt)dt = 0 ∀m,n ∈ Z

∫ T/2

−T/2
sin(nωt) sin(nωt)dt = 0 ∀m,n ∈ Z

∫ T/2

−T/2
cos(nωt) cos(nωt)dt = 0 if m 6= n

7.2.2 Convergence of the Fourier Series to the actual function

Fourier originally believed that his series could be used to approximate any periodic
function. However, Gustav and Dirichlet showed that some conditions are required, and
were able to construct pathological functions for which the Fourier series does not converge
to the function. In particular, Dirichlet showed that provided a periodic function f(t) has,
within a single period:

• A finite number of Maxima and Minima.

• A finite number of points of (finite) discontinuity.

then the corresponding Fourier series expansion of f(t) will converge to the correct result
at all points where f(t) is continuous, and to the average of the right-hand and left-hand
limits of f(t) at points of discontinuity.

These are known as the Dirichlet Conditions, and will be satisfied by any function we
consider in this course.
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7.2.3 Additional examples using the standard method of integration to

obtain the Fourier Coefficents

Example 7.3 (Sawtooth Wave). Consider the sawtooth wave shown.

Figure 12: Sawtooth Wave

It satisfies f(t) = Et
T

throughout the first cycle 0 < t < T . Therefore the integrals

for the coefficients are:

an =
2

T

∫ T

0

Et

T
cos

(
2πnt

T

)
dt, bn =

2

T

∫ T

0

Et

T
sin

(
2πnt

T

)
dt

which, through application of Integration By Parts, yield an = 0 and bn = −E
nπ

for all

1 ≤ n.

Clearly the average value of f is E
2

, so the DC level a0
2

= E
2

, and therefore the Fourier

series is given by:

f(t) =
E

2
− E

π

∞∑
n=1

1

n
sin

(
2πnt

T

)
If the DC level is not obvious, it can be found simply by calculating the area under

the graph for a full period and then normalising (divide by T ), or else explicitly using the
formula for a0 as in example 1.
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Example 7.4 (Triangular Wave). Consider the triangular wave f(t) shown.

Figure 13: Triangular Wave

For this wave,

f(t) =


E
T/2

t = 2Et
T
, for 0 < t < T

2

−2E
T

(t− T ) = 2E
(
1− t

T

)
, for T

2
< t < T

Therefore for n ≥ 1,

an =
2

T

{∫ T/2

0

2Et

T
cos
(2nπt

T

)
dt+

∫ T

T/2

2E(1− t

T
) cos

(2nπt

T

)
dt

}
Using integration by parts (choosing the polynomial part for differentiation, and the

trigonometric part for integration) gives:

an =
2

T

{[
2Et

T

T

2nπ
sin
(2nπt

T

)]T/2
0

− 2E

T

T

2nπ

∫ T/2

0

sin
(2nπt

T

)
dt

+

[
2E(1− t

T
)
T

2nπ
sin
(2nπt

T

)]T
T/2

− T

2nπ

∫ T

T/2

2E
−1

T
sin
(2nπt

T

)}
which eventually results in

an =
−2E

n2π2
(1− cos(nπ)) =


−4E
n2π2 for n odd,

0 for n even.

For the remaining coefficients,

bn =
2

T

{∫ T/2

0

2Et

T
sin
(2nπt

T

)
dt+

∫ T

T/2

2E(1− t

T
) sin

(2nπt

T

)
dt

}
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which eventually will collapse to bn = 0.

Finally, it should be clear from the graph that the DC level is E/2. Therefore,

a0

2
=
E

2

Hence we have the Fourier series:

f(t) =
E

2
− 4E

π2

∑
odd n∈N

1

n2
cos
(2nπt

T

)
=

E

2
− 4E

π2

{
cos
(2πt

T

)
+

1

9
cos
(6πt

T

)
+

1

25
cos
(10πt

T

)
+ . . .

}

7.2.4 Derivation of the Phasors

How do we know the relationship between the phasors and the harmonics?

Recall the trigonometric expansion cos(A + B) = cos(A) cos(B) − sin(A) sin(B). Then
consider the following general cosine wave with a phase shift:

Rn cos(nωt+ φn) = Rn cos(φn) cos(nωt)−Rn sin(φn) sin(nωt)

= an cos(nωt) + bn sin(nωt)

where an = Rn cos(φn) and bn = −Rn sin(φn).
So we can write the nth harmonic asRn cos(nωt+ φn), where:

a2
n + b2

n = R2
n(cos2(φn) + sin2(φn)) = R2

n so Rn =
√
a2
n + b2

n,

and

−bn
an

=
−(−Rn sin(φn))

Rn cos(φn)
= tan(φn).

Next, recall the Euler formula ejx = cos(x) + j sin(x) where x ∈ R and j =
√
−1 is the

imaginary number. Therefore,

Rn ej(nωt+φn) = Rn cos(nωt+ φn) + jRn sin(nωt+ φn)

so taking the real parts only and then splitting the exponential, the nth harmonic is:

Rn cos(nωt+ φn) = Re
{
Rn ej(nωt+φn)

}
= Re

{
Rn ejφn ejnωt

}
= Re

{
(an − jbn) ejnωt

}
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since

Rn ejφn = Rn(cos(φn) + j sin(φn)) = an − jbn, which we set toAn.

As an alternative derivation, consider the following:

(an − jbn) ejnωt = (an − jbn)(cos(nωt) + j sin(nωt))

= (an cos(nωt) + bn sin(nωt)) + j(an sin(nωt)− bn cos(nωt))

so considering the real and imaginary parts, the nth harmonic is equivalent to
Re
{

(an − jbn) ejnωt
}

.

7.2.5 Examples of obtaining the Complex Form by Integration

Here are some examples where we calculate the complex form of the Fourier series, but still
using the integration method rather than the Laplace Transforms method. As we shall see,
one advantage of this over the trigonometric form (i.e obtaining the regular coefficients by
integration) is that we only have to evaluate one integral instead of two.

Example 7.5. Consider again the sawtooth wave.

Figure 14: Sawtooth Wave

In the first cycle, f(t) = Et
T

. Therefore the phasors are found by:

An =
2E

T 2

∫ T

0

t e−jnωt dt =
2E

T 2

{[
−1

jnω
t e−jnωt

]T
0

+
1

jnω

∫ T

0

e−jnωt dt

}

=
2E

T 2

{
−T
jnω

e−jnTω− 1

j2n2ω2

[
e−jnωt

]T
0

}

=
2E

T 2

1

j2n2ω2

{
e−jnTω(−jnTω − 1) + 1

}
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Substituting in ω = 2π
T

and simplifying,

An =
2E

T 2

T 2

j2n2(2π)2

{
e−2πjn(−2πjnT − 1) + 1

}

=
E

2π2n2j2
(−2πnj − 1 + 1) =

−2πnjE

2π2n2j2

=
−E
πnj

=
Ej

πn

since for any integer n,

e−2πjn = cos(−2πjn) + j sin(−2πjn) = 1 + 0 = 1

Then An = an − jbn, so

an = Re
{
An
}

= 0, and bn = −Im
{
An
}

=
−E
πn

Whether from the graph or the formula, the DC level a0
2

= E
2

. Hence,

f(t) =
E

2
− E

π

∞∑
n=0

1

n
sin
(2πnt

T

)
Example 7.6. Next, consider this clipped sawtooth waveform.

Figure 15: Clipped Sawtooth Wave

In this case, during the first cycle:

f(t) =


2Et
T

for 0 < t < T
2

,

E for T
2
< t < T
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Therefore,

An =
2

T

∫ T

0

f(t) e−jnωt dt =
2E

T

{
2

T

∫ T/2

0

t e−jnωt dt+

∫ T

T/2

e−jnωt dt

}

=
2E

T

{
2

T

([
−t
jnω

e−jnωt
]T/2

0

+
1

jnω

∫ T/2

0

e−jnωt dt

)
+

[
−1

jnω
e−jnωt

]T
T/2

}

=
2E

T

{
2

T

((
−T

2jnω
e−jnπωT/2−0

)
− 1

j2n2ω2

[
e−jnωt

]T/2
0

)
− 1

jnω

(
e−jnωT − e−jnωT/2

)}

=
2E

T

{
−1

jnω
e−jnωT/2− 2

Tj2n2ω2

(
e−jnωT/2−1

)
− 1

jnω
e−jnωT +

1

jnω
e−jnωT/2

}

=
−2E

j2n2ω2T 2

{
2(e−jnωT/2−1) + jnωT e−jnωT

}
Then using ω = 2π

T
,

An =
E

2n2π2

{
2(e−jnπ−1) + 2πjn e−2jnπ

}
Now, as before e−2jnπ = 1. However, we also have e−jnπ = cos(nπ) = (−1)n, so the

phasor for the nth harmonic of f(t) is given by:

An =
E

n2π2

{
cos(nπ)− 1 + jπn

}
=

(
E
(
(−1)2 − 1

)
n2π2

)
+ j

(
E

nπ

)
Considering the real and imaginary parts,

an = Re{An} =


−2E
π2n2 for n odd,

0 for n even

and

bn = −Im{An} =
−E
πn

for all n.

From the graph or formula, the DC level is a0
2

= 3E
4

. Therefore the Fourier series is:

f(t) =
3E

4
− 2E

π2

∑
odd n∈N

1

n2
cos
(2πnt

T

)
− E

π

∞∑
n=1

1

n
sin
(2πnt

T

)

138



7.3 Chapter 3: Matrix Algebra

7.3.1 Inverse of a 3× 3 Matrix

There are four basic steps to this method for determining the inverse of a 3× 3 matrix (if
you wish, you can use other methods such as Gaussian elimination):

1. Calculate the “matrix of minors”.

2. Create the Co-factor Matrix.

3. Determine the Adjunct Matrix.

4. Finally, multiply the Adjunct Matrix by 1/Determinant.

Example 7.7. Find the inverse of

A =


3 0 2

2 0 −2

0 1 1


1. Calculate the “matrix of minors”:

To do this, for each element of the matrix: ignore the values on the current

row and column, and calculate the determinant of the remaining values. Then

put these determinants into a matrix.

∣∣∣∣∣0 −2

1 1

∣∣∣∣∣
∣∣∣∣∣2 −2

0 1

∣∣∣∣∣
∣∣∣∣∣2 0

0 1

∣∣∣∣∣
∣∣∣∣∣0 2

1 1

∣∣∣∣∣
∣∣∣∣∣3 2

0 1

∣∣∣∣∣
∣∣∣∣∣3 0

0 1

∣∣∣∣∣
∣∣∣∣∣0 2

0 −2

∣∣∣∣∣
∣∣∣∣∣3 2

2 −2

∣∣∣∣∣
∣∣∣∣∣3 0

2 0

∣∣∣∣∣



=


0× 1− (−2)× 1 2× 1− (−2)× 0 2× 1− 0× 0

0× 1− 2× 1 3× 1− 2× 0 3× 1− 0× 0

0× (−2)− 2× 0 3× (−2)− 2× 2 3× 0− 0× 2

 =


2 2 2

−2 3 3

0 −10 0


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2. Create the Co-factor Matrix:

To turn the matrix of minors into the co-factor matrix, apply a checkerboard

pattern of minus signs on alternate entries.
2 2 2

−2 3 3

0 −10 0

 Applying the sign-switching pattern:


+ − +

− + −
+ − +



Results in the co-factor matrix:


2 −2 2

2 3 −3

0 10 0


3. Determine the Adjunct Matrix (also known as the adjugate or adjoint matrix):

The adjunct matrix is the transpose of the co-factor matrix, which means we

reflect the matrix across the diagonal:
2 −2 2

2 3 −3

0 10 0


T

=


2 2 0

−2 3 10

2 −3 0


4. Finally, multiply the Adjunct Matrix by 1/Determinant:

In Step 1, we already obtained most of the information required to calculate the

determinant. Going across the top row of A and multiplying each entry by the

corresponding co-factor:

det(A) = 3(2) + 0(2) + 2(2) = 6 + 4 = 10

Thus, the inverse of A is given by:

A−1 =
1

10


2 2 0

−2 3 10

2 −3 0

 =


1/5 1/5 0

−1/5 3/10 1

1/5 −3/10 0


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5. We can check that we have obtained the correct answer by checking that AA−1 =

I:
3 0 2

2 0 −2

0 1 1

× 1

10


2 2 0

−2 3 10

2 −3 0



=
1

10


3× 2 + 0× (−2) + 2× 2 3× 2 + 0× 3 + 2× (−3) 3× 0 + 0× 10 + 2× 0

2× 2 + 0× (−2) + (−2)× 2 2× 2 + 0× 3 + (−2)× (−3) 2× 0 + 0× 10 + (−2)× 0

0× 2 + 1× (−2) + 1× 2 0× 2 + 1× 3 + 1×−3 0× 0 + 1× 10 + 1× 0



=
1

10


10 0 0

0 10 0

0 0 10

 =


1 0 0

0 1 0

0 0 1

 Similarly we could check that A−1A = I.

7.3.2 General Properties of Eigenvalues

Theorem 7.1. The determinant of an invertible square matrix is equal to the product

of it’s eigenvalues. That is, for an invertible n×n matrix A with eigenvalues λ1, . . . , λn:

|A| = λ1λ2 . . . λn

This is because the characteristic polynomial of A can be factorised in the following
way:

|A− λI| = (λ1 − λ)(λ2 − λ) . . . (λn − λ)

and so setting λ = 0 results in |A| = λ1λ2 . . . λn.

Theorem 7.2. The sum of the eigenvalues of a square matrix is equal to the “trace”

of the matrix, that is, the sum of its diagonal elements.

tr(A) = λ1 + λ2 + · · ·+ λn

These two theorems can be used to obtain two eigenvalues of an n× nmatrix A from
a pair of simultaneous equations, given that the other (n− 2) are already known.

Theorem 7.3. Let A be a real, symmetric n× n matrix. Then,

i) Every eigenvalue of A is real and has a corresponding real eigenvector.
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ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal (perpendicular).

iii) Let the eigenvalues of A be the entries on a diagonal matrix D, and let U be a

matrix whose columns are the corresponding eigenvectors. Then, A = UDUT ,

where UT is the transpose of U (swap the rows and columns).

This is known as the Spectral Theorem. Basically, it says that for real, symmetric

matrices there is a way of converting them to a related diagonal matrix, which can be

useful in certain contexts.

There are many other properties of eigenvalues and eigenvectors for different classes of
matrices, but they are not within the scope of this course. Matrix algebra is fundamental
to one of the largest and most active areas of pure mathematics, as well as its many physical
applications.

7.3.3 An application of Matrix algebra: Linear stability analysis of systems

of ODEs

Eigenvalues are an extremely important concept in algebra, and have many uses when
related to matrices that model physical problems. For systems of linear first-order ODEs
in the form ẋ = Ax, there is an equilibrium at the origin since if x = 0 then ẋ = 0 which is
the definition of an equilibrium point. We can then determine the stability of the system
at the origin by calculating the eigenvalues of the matrix of coefficientsA. For equilibrium
points not located at the origin, a system in the stated form can be obtained by linearising
about that point.

• If all of the eigenvalues of A have negative real part, the system is linearly stable,
which means that after a small perturbation the system will tend to return to the
equilibrium point (think of a ball initially located at the bottom of a basin).

• If at least one of the eigenvalues has positive real part, the system is unstable and a
small perturbation will be magnified (think of a ball positioned at the top of a hill).

• If all of the eigenvalues have non-positive real part, and at least one eigenvalue has
real part exactly zero, the system is called marginally stable. This situation requires
a bit more work to analyse.

This is an important tool in the study of dynamical systems, which can be used to model
many different real-world scenarios including weather patterns, population biology, and
chemical reactions. For example, if the set of ODEs represents a fixed point in a population
biology system, knowing whether or not it is linearly stable will help us understand the
effect of a small change to the system (for example, a small temporary increase in one
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species’s population) - if it is stable, the effect will be contained and the system will recover
back to the equilibrium. But if it is unstable, a small change could be disasterous.

7.3.4 Obtaining the State Transition Matrix

This is the fullprocessusedtoderiveeAt usingamethodbasedonadiagonalisationprocess.
Suppose we have the state variable description ẋ = Ax whereA is an n× nmatrix.

Let x = Ty, where T is a constant square matrix of appropriate dimensions.

∴ ẋ = T ẏ

=⇒ T ẏ = ẋ = Ax = ATy

and so we have

ẏ = By, where B = T−1AT.

The relationship between matrices A and B (B = T−1AT ) is known as a similarity
transformation. They have the same set of eigenvalues, and their sets of eigenvectors
are related but not (necessarily) the same. To prove these results, let λ and x be an
eigenvalue-eigenvector pair for matrix A. By definition Ax = λx, so then ATy = λTy,
and so we obtain T−1ATy = λy orBy = λy. Hence, λ is also an eigenvalue ofB, and has
the corresponding eigenvector y = T−1x.

Next, choose T to be the modal matrix ofA.
Now,

AT = A
(
x1,x2, . . . ,xn,

)
=

(
Ax1, Ax2, . . . , Axn,

)
=

(
λ1x1, λ2x2, . . . , λnxn,

)

=
(
x1,x2, . . . ,xn,

)

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


∴ AT = TD, where D = diag(λ1, λ2, . . . , λn). That is, D is the matrix with the eigen-
values ofA on the digonal and zeros elsewhere. Note that the ordering of eigenvalues inD
must match the ordering of the eigenvectors in T . Hence,

A = TDT−1 and D = T−1AT
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Therefore if T is chosen as the modal matrix of A, then matrix B from before is equal to
this diagonal matrix D, and so we can obtain the n scalar equations in a simple form as
follows:

ẏ = Dy, or


ẏ1

ẏ2
...
ẏn

 =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn



y1

y2
...
yn


So the n scalar first-order ODEs are:

ẏ1 = λ1y1, ẏ2 = λ2y2, . . . , ẏn = λnyn

and these can be easily solved using the method for separable linear first-order ODEs (or
using Laplace transforms), yielding:

yi(t) = eλit yi(0) i = 1, 2, . . . , n

Putting these solutions back into matrix form:
y1(t)
y2(t)

...
yn(t)

 =


eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt



y1(0)
y2(0)

...
yn(0)


and we write this as

y(t) = eDt y(0), where D = diag(λ1, λ2, . . . , λn) and eDt = diag(eλ1t, eλ2t, . . . , eλnt)

Finally, let’s perform some substitutions in order to get the solution back in terms of the
originalvariablex. Recall thatx(t) = Ty(t)andsox(0) = Ty(0) inparticular. Therefore,
y(t) = T−1x(t) and y(0) = T−1x(0). Hence,

y(t) = eDt y(0)

=⇒ T−1x(t) = eDt T−1x(0)

=⇒ x(t) = T eDt T−1x(0)

and so

x(t) = eAt x(0), where eAt = T eDt T−1.

Since we know how to obtain T and D from analysing the eigenvalues and eigenvectors
of A, this then tells us how to obtain the state transition matrix eAt and thus solve the
original ODE problem ẋ = Ax.
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