FMSS: Lecture 11 handout

Solving ODE systems using eigenvalues and eigenvectors

An ODE system $\dot{\mathbf{x}} = A\mathbf{x}$ has a solution:

$$\underline{\mathbf{x}}(t) = e^{At} \underline{\mathbf{x}}(0)$$

where e^{At} is the state transition matrix.

With initial conditions $\underline{\mathbf{x}}(0)$, we can use this formula to predict the state variables $\underline{\mathbf{x}}(t)$ at any future time.

Modal matrices

Given an $n \times n$ matrix A, the modal matrix T is constructed column-by-column using the eigenvectors of A:

$$T = (\underline{\mathbf{e}}_1, \underline{\mathbf{e}}_2, \dots, \underline{\mathbf{e}}_n,)$$

where each column vector $\underline{\mathbf{e}}_i$ is the i^{th} eigenvector of A.

The actual ordering of eigenvectors is not important so long as **the ordering always matches** with the corresponding eigenvalues.

There are infinitely many modal matrices, since the order of the eigenvectors is interchangable, and the eigenvectors themselves are not unique.

Obtaining the state transition matrix

Given a system of n linear first-order ODEs formulated as $\underline{\dot{\mathbf{x}}} = A\underline{\mathbf{x}}$, where A is a square $n \times n$ matrix, we can obtain the state transition matrix using the following **diagonalisation process**:

- 1. Find eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors $\underline{\mathbf{e}}_1, \ldots, \underline{\mathbf{e}}_n$ of A.
- 2. Construct the **diagonal matrix of eigenvalues** $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ and the $n \times n$ **modal matrix** T where the i^{th} column consists of the eigenvector of A corresponding to the eigenvalue in the i^{th} diagonal entry of D.

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \quad \text{and} \quad T = (\underline{\mathbf{e}}_1, \dots, \underline{\mathbf{e}}_n)$$

3. Construct the diagonal matrix of exponentials e^{Dt}

$$e^{Dt} = diag(e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t}) = \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

4. Perform two matrix multiplications to calculate e^{At}

$$e^{At} = T e^{Dt} T^{-1}$$

5. The solution is given by the matrix multiplication:

$$\underline{\mathbf{x}}(t) = e^{At} \underline{\mathbf{x}}(0)$$

Example 1

A simple continuous-time model of population dynamics for two species is given by:

$$\underline{\dot{\mathbf{x}}} = A\underline{\mathbf{x}}, \quad \text{where} \quad A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix} \quad \text{with initial conditions }\underline{\mathbf{x}}(0).$$

The eigenvalue and eigenvector pairs of A are:

$$\lambda_1 = 1$$
, $\underline{\mathbf{b}}_1 = \alpha \begin{pmatrix} 1 \\ -2 \end{pmatrix}$; and $\lambda_2 = 6$, $\underline{\mathbf{b}}_2 = \beta \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Determine the state transition matrix using the diagonalisation process.

Example 2

An electronic control system is described by the following set of state variable equations:

$$\frac{dx_1}{dt} = x_2,$$
 $\frac{dx_2}{dt} = x_3,$ $\frac{dx_3}{dt} = \frac{9}{2}x_1 - \frac{7}{2}x_3$

Determine the state transition matrix and hence find solutions for $x_1(t), x_2(t), x_3(t)$.