FMSS: Lecture 1 handout

Laplace transform and inverse transform

The Laplace transform is defined for a function f(t) of time that is zero at any t < 0.

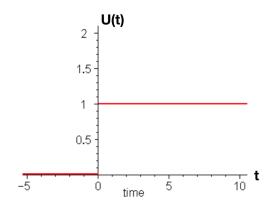
We take Laplace transforms and inverse Laplace transforms of functions by matching them with entries in the table provided, which have already been calculated from first principles.

$$f(t) \stackrel{\mathcal{L}}{\longrightarrow} \bar{f}(s)$$

$$f(t)$$
 $=$ $\bar{f}(s)$

Linearity

If f(t) and g(t) are time-dependent functions, and a and b are constants:


$$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}$$

Discontinuity

A function f(x) is discontinuous at a point if there is a break/jump in the graph at that point.

Unit step function / Heaviside step function

$$U(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

