FMSS: Lecture 4 handout

Transfer function of a system

Given a linear system with input $v_i(t)$ and output $v_o(t)$, the transfer function is:

$$G(s) = \frac{\bar{v}_o(s)}{\bar{v}_i(s)}$$

Determining the transfer function

Given a set of multiple ODEs corresponding to the system, to find the transfer function:

- 1. Take Laplace transforms of all equations.
- 2. Plan a sequence of steps (substituting and rearranging the equations) to eliminate all other s-dependent variables.
- 3. Enact the plan!
- 4. Re-arrange to the form: $\bar{v}_o(s) = G(s) \times \bar{v}_i(s)$.
- 5. Read off G(s).

Characteristic equation

With the transfer function G(s) simplified as much as possible, the characteristic equation is given by:

denominator of
$$G(s) = 0$$

Order of the system

The largest power of s (equivalently, the number of solutions) in the characteristic equation is the order of the system. (e.g. if it is a quadratic equation, then it is "second-order").

Stability of the system

A system is stable **if and only if all** solutions of the characteristic equation have **negative** real part.

Example 1

Determine the transfer function of a system with the following equations.

R, C are positive constants.

 i_1, i_2 are time-dependent currents.

 $v_i(t)$ is the input and $v_o(t)$ the output p.d.

(a)
$$v_i(t) = 3Ri_1(t) + 2Ri_2(t)$$

(b)
$$Ri_1(t) = Ri_2 + \frac{1}{C} \int_0^t i_2(t) dt$$

(c)
$$v_o(t) = \frac{1}{C} \int_0^t i_2(t) dt + R(i_1(t) + i_2(t))$$

Example 2

Determine the transfer function of a system with the following equations.

C, R are positive constants.

 i_1, i_2, i_3 are time-dependent currents.

 $v_i(t)$ is the input and $v_o(t)$ the output p.d.

(a)
$$v_i = R(i_1 + i_2 + i_3) + R(i_2 + i_3)$$

(b)
$$\frac{1}{C} \int_0^t i_1 dt = R(i_2 + i_3)$$

$$(c) \qquad \frac{1}{C} \int_0^t i_2 \mathrm{d}t = 2Ri_3$$

$$(d) v_o = -2Ri_3$$

Response function

The response function g(t) is the inverse Laplace transform of the transfer function G(s).