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Using Complex Numbers in Circuit Analysis 
and 

Review of the Algebra of Complex Numbers 
 

The purpose of this note is to review the algebra of concept numbers and show 
how they can be used to simplify analyses of linear circuits.  This is the basic theory 
behind how PSpice handles linear circuits (and linear small-signal approximations of 
non-linear circuits).  The basic techniques are also widely used in many types of linear 
analysis found in physics and engineering (electrical or mechanical), so if you are 
majoring in one of those fields, you will need to become familiar with these techniques 
and concepts sooner or later, even though we will not use them extensively in this course.  
I illustrate the technique with a simple, standard LRC circuit and then with a non-trivial 
example, and I show how the same example can be easily solved by PSpice.  At the end I 
discuss briefly how PSpice can handle much more complicated circuits, including non-
linear circuits, by extending the same mathematical techniques. 

Complex numbers are commonly used in electrical engineering, as well as in 
physics.  In general they are used when some quantity has a phase as well as a 
magnitude.  Such a situation occurs when one deals with sinusoidal oscillating voltage 
and current (other examples in physics include optics, where wave interference is 
important, and quantum mechanical wave 
functions).  I want to emphasize that 
complex numbers are used to make 
calculations easier!  Do not be intimidated 
by trying to imagine what an imaginary 
number is.  There is no need for that.  
Instead, realize that there is nothing 
imaginary about the phase of a voltage 
waveform, and there is nothing 
particularly complex about working with 
complex numbers.  Just look at them for 
now as a useful tool that you may as well 
start getting used to.1  Complex numbers 
as used here are equivalent to the 
“phasors” used for this purpose in 
elementary physics textbooks.  The 
advantage of calling them complex numbers instead of phasors is that you can make use 
of the (hopefully) familiar algebra of complex numbers. 

You may also refer to Appendix B of Horowitz and Hill for a review of complex 
numbers. 

                                                 
1 If you haven’t already, then later you can study the beautiful and seemingly magical mathematics of 
functions of complex variables, but there is no need for that in this course. 

 
Figure 1.  A complex number z shown in the 
complex plane.  x is the real part of z, y is the 
imaginary part of z, r is the magnitude of z, and I 
is the phase of z. 

             From Professor Robert Johnson, UC Santa Cruz, with permission.
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Representations of 
Complex Numbers 

Let the symbol z  
represent a complex number, 
while x  and y  are its real 
and imaginary parts: 

jyxz � , where 1�{j
.2  The complex conjugate of 
z  is jyxz � * .  In 
general, to change a complex 
number into its complex 
conjugate, simply change j  
to j�  everywhere.  Then all 
of the normal rules of 
algebra apply, with the 
understanding that 12 � j : 

xyjyxjyxz 2)( 2222 �� �  
22*2 )()( yxjyxjyxzzz � ��� �{  

)()()()( 2121221121 yyjxxjyxjyxzz ��� ��� �  
Since we want to use complex numbers to represent phases of waveforms, it is 

essential to understand the polar, as well as Cartesian, form of a complex number (see 
Figure 1).  This is no different from conversions between rectangular and plane polar 
coordinates, except that instead of labeling the axes x and y we label them Re and Im.  
Think of the complex number as a 2-dimensional vector in a plane.  Addition of two 
complex numbers looks exactly like vector addition, either graphically or algebraically 

(as in the addition example above and in Figure 2).  And 22 yxrz �   is just the 
length of the vector.   

Looking at Figure 1, you can see that  
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so we can write our complex number as 
� � IIIII jrejrrjrz  ��� �� sincossincos  

 
where the last step makes use of Euler’s formula: III sincos �� je j .  This essential 
relation points directly to one reason why complex numbers make circuit analysis easier.  
Instead of representing a sinusoidal voltage or current as a sine or cosine function, we can 
represent it as an exponential.  Exponentials are much easier to work with algebraically!  

                                                 
2 Electrical engineers, and our textbook, use this notation, but physicists and physics textbooks (and 
mathematicians) generally use the symbol i instead of j. 

 
Figure 2.  Graphical representation of the addition of two 
complex numbers.  Note how the two numbers add as vectors in 
2-D when the real and imaginary parts are simply added as 
x=x1+x2 and y=y1+y2  respectively. 
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Unless you love dealing with complicated trig identities, choose the complex exponential 
over the sine and cosine functions! 
 Here is a summary of the two representations of a complex number: 
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Keep in mind when calculating the phase I  that there is in general an ambiguity of Sr  
radians, which you have to resolve by looking at the signs of both y  and x .  The arctan 

function on your calculator will always return an angle in the range 22
SS �o� .  You can 

avoid this ambiguity if you use the special function on your calculator for transforming 
between rectangular and polar coordinates.  Also, computer languages usually include an 
inverse tangent function with two separate arguments for y  and x , which will return the 
correct value of I  in the range S20 o  or SS �o�  (e.g. ATAN2 in FORTRAN). 

Basic Algebra with Complex Numbers 
Addition and subtraction of complex numbers are most easily done using the 

Cartesian (rectangular) form, for the same reason that vectors are most easily added and 
subtracted in Cartesian components.   
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However, multiplication and division are most easily done using the polar form, 

making use of the properties of the exponential function: 
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Nevertheless, multiplication in the rectangular form is straightforward: 

� � � �12212121221121 )()( yxyxjyyxxjyxjyxzz ���� ��� � . 
 
Division can be accomplished either by converting numerator and denominator to the 
polar form and using the equations above, or by multiplying the numerator and 
denominator by the complex conjugate of the denominator.  This is an exercise that is 
frequently required in circuit analysis: 
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In this way we can separate the real and imaginary parts of the ratio, from which we can 
calculate the magnitude and phase, if necessary.  Do not try to memorize such a formula!  
It is the simple technique of multiplying the numerator and denominator by the complex 
conjugate of the denominator that you should remember.  Executing this technique 
always guarantees that the resulting denominator will be real, with the imaginary number 
j appearing only in the numerator. 
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Working with Complex Impedance 
 Voltage and current are always real, observable quantities.  In a linear A/C circuit 
with a sinusoidal stimulus, they will always have a form like )cos()( 0 IZ � tVtV .  The 
algebraic complexities come in when we introduce capacitors and inductors, which 
produce D90r  changes in phase.  Adding sines and cosines with differing phases is 
algebraically painful, requiring expertise with trig identities.  However, if the circuit is 
described by linear differential equations, then we can simplify life by adding an 
imaginary part to the voltage or current: 

� �IZIZIZ �� ���� tjeVtVjtVtV 000 )sin()cos()(  
with the understanding that the observed voltage is just the real part of this expression.  
Now, when you do your circuit analysis you get to deal with the simple properties of the 
exponential function instead of nasty trig identities.  When done, just take the real part of 
the final result, and that is your answer.  As you will see, what this procedure will do for 
you is turn a set of linear differential equations into a set of linear algebraic equations.3 
 This works only because the circuit is a linear circuit, described by linear 
differential equations.  Since linear equations do not involve any squares, square roots, 
and so forth of the voltage or current, or multiplication of one voltage or current by 
another, the real and imaginary parts don’t get mixed up.  Take a look at the equations in 
the previous section.  The addition and subtraction equations do not mix up the real and 
imaginary parts, but the equations for multiplication and division do.  Multiplying a 
complex number by a real constant also obviously does not mix up the real and imaginary 
parts.  Essentially, a linear equation is one that will not mix up the real and imaginary 
parts of the voltages and currents.  From a practical standpoint, a linear circuit is one that 
includes only passive components (resistors, capacitors, and inductors) plus voltage 
and/or current sources.  No diodes, transistors, vacuum tubes, etc. are allowed. 
 It is perhaps worth mentioning here that the same formalism, with the same 
advantages of using complex numbers, works in mechanics when dealing with small, 
harmonic oscillations of mechanical systems. 
 The recipe for obtaining the steady-state4 harmonic response of a linear circuit is 
straightforward.  Write each non-static voltage or current source as a complex number: 

IjeV0  or IjeI0  
where the phase I  can be taken to be zero if there is only one source.  Otherwise the 
relative phases of the sources must be taken into account.  Then treat each passive 
component as an impedance 

Resistor: RZ   

Capacitor: 
Cj

Z
Z
1

  

Inductor: LjZ Z  
                                                 
3 This procedure works for voltage and current sources that are sinusoidal (harmonic).  However, a non-
sinusoidal periodic source can be written as a Fourier series of sines and cosines.  Each term in the series 
can be treated by the method described here.  Since the circuit is linear, the response is just the linear 
superposition of the responses to the individual harmonic Fourier components. 
4 By steady-state, I mean turn all the switches on and then wait long enough for the transient behavior to 
dampen out and disappear.  Usually the wait is very short, less than a blink of the eye. 
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where in general the impedance relates the voltage across a component to the current 
passing through the component according to a generalization of Ohm’s law: 

ZIV   
Use Kirchhoff’s laws to write a set of linear equations for the currents and voltage 

in the circuit, exactly as you would do for a circuit made up of batteries and resistors.  
The only difference is that some of the “resistances” are imaginary, so what you end up 
with is a set of complex linear equations.  Solve the equations for the currents and 
voltages.  This is tedious to do by hand, but keep in mind that a computer can solve an 
amazingly large set of complex linear equations in an instant, using standard “canned” 
programs.  Many scientific calculators also have built-in functions for solving sets of 
linear complex equations.  Finally, express the resulting voltages and/or currents in polar 
form, from which you can read off the amplitude and phase of each current or voltage. 
 As an example not included in Horowitz and Hill, let’s analyze the standard series 
LRC circuit (Figure 3) which has a voltage oscillator in series with a resistor, capacitor, 
and inductor.  The differential equation for this circuit follows from adding up the voltage 
changes around the loop: 

00  ���
C
Q

dt
dILIReV tjZ , 

where tjeV Z
0  is the driving voltage, expressed as a complex quantity as suggested 

above, with an assumed phase 0 I .  Using ³ IdtQ , we get an equation for the 
current: 

³  �� tjeVRIIdt
Cdt

dIL Z
0

1 . 

This is readily solved by making the substitution )(
0

IZ � tjeII , which turns the 
differential equation into an algebraic equation: 

00
1 VeIR
Cj

Lj j  �¸̧
¹

·
¨̈
©

§
�� I

Z
Z . 

The quantity in parentheses is exactly the “impedance” that one would get by using the 
impedance rules listed above for resistors, capacitors, and inductors, plus the rule that 
impedances in series simply add up.  So, from now on do not bother to write down the 
differential equation!  Just assume the rules for complex impedance and immediately 
write down the algebraic equation.  

 
Figure 3.  LRC series circuit. 
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 To analyze the series LRC circuit without writing any differential equation, we 
start with “Ohm’s Law” for a reactive circuit: 

Z
V

I 0  with Lj
Cj

RZ Z
Z

�� 
1 . 

To do the division, I convert the impedance to polar form: 
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So the current is given by 
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Figure 4.  Resonance curves for an LRC series circuit, with R=10 Ohms, C=2PF, and 
L=4mH.  
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with ¸
¸
¹

·
¨
¨
©

§ �
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JZ
ZZI

2
0

2
arctan  for the phase of the current. 

 This result exhibits a resonance, with 0Z , the natural frequency of the circuit, 
being the frequency at which the impedance is minimum (and equal simply to R) and the 
current is maximum, with a phase shift of zero relative to the voltage.  Also, J  is a 
measure of the amount of damping in the circuit and, thus, the width of the resonance 
curve.  This resonance behavior is illustrated in Figure 4. 

Analyzing a More Complex Linear Circuit 
A more complicated looking example is shown in Figure 5, where the driving 

voltage is the real part of tietV Z10)(   volts, with angular frequency 410 Z  radians/s.  
The impedance of the inductor is jLj 4 Z  ohms, and the impedance of the capacitor is 

jCj 25.01 � Z  ohms.  The objective is to find all the currents in the circuit and the 
equivalent impedance of the overall circuit, as seen by the voltage source.  In this case 
there are 4 loops, so we will have 4 loop equations and 3 node equations.  This goes 
beyond the complexity that you will see in homework or on any exam, but I throw it in as 
a random demonstration that the analysis is straightforward and can be formulated in a 
manner that makes a solution by computer fairly easy.  

  I prefer to work with the concept of “loop currents,” in order to avoid having to 
write down the node equations.  To understand this concept, look at the circuit as redrawn 
in Figure 6.  The four loops are evident, and each is associated with a loop current.  The 
current through the capacitor is clearly 4i , the current through the voltage source is 1i , 
and the current through the 2-ohm resistor is 3i .  However, each of the other 4 
components has two currents flowing through it.  For example, the current flowing 
upward through the inductor is 23 ii � , and the current flowing downward through the 
leftmost resistor is 21 ii � .  Now, let’s apply Kirchhoff’s loop law to loop #1, starting at 
the lower left corner and proceeding upwards through the voltage source, in the direction 
of loop current 1i : 

01)(10 21  ��� ii  

 
Figure 5.  Example of a 4-loop linear circuit. 
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Do the same for loop #2, starting in the lower left hand corner and proceeding upwards 
through the 1-ohm resistor, in the direction of the loop current 2i : 

04)(1)(1)( 324212  ��������� jiiiiii  
The other two equations, for loops 3 and 4 respectively, are 

021)(4)( 34323  �������� iiijii  
01)(1)(25.0 24344  ������� iiiiji  

Such equations are easiest to deal with if organized in matrix notation: 
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Solving these equations by hand would be tedious and annoying, but doing it by 
computer with a program like Mathcad, Mathematica, or Matlab couldn’t be easier.  For 
example, in Mathcad let’s call the matrix Z , so the equation looks like 

VIZ  �  
Fill the 16 complex values into the matrix Z and the 4 values into V, and then type 

VZI � �1  
and you’re done!5  The result is 
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j
j
j
j

I

084.0213.5
652.0990.4
787.1457.5
787.1457.15

 

Here is how to interpret the result.  For example, the current 1i  can be written in 

polar form as S037.0
1 56.15 jei � , so the current as a function of time is  

)037.0cos(56.15)(1 SZ �� tti . 

                                                 
5 This is not the most efficient way to solve 4 linear equations, but for this purpose, who cares?  The 
computer will finish the calculation before you can say “go”! 

 
Figure 6.  The circuit redrawn with loop currents. 
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That is, the current passing through the source lags behind the voltage by S037.0  
radians, or about 6.7 degrees.  Figure 7 shows how the current and voltage would look if 
displayed on an oscilloscope.  The equivalent impedance of the circuit, as seen by the 
source, can be calculated from the ratio of the voltage and current of the source: 

S037.0

1
eq 56.15

10 je
i
V

Z ��  . 

Thus at this frequency, the circuit looks slightly inductive to the source. 

Linear Circuit 
Analysis with 
PSpice  
 For illustration, 
let’s analyze the same 
circuit as shown in 
Figure 5 using PSpice.  
(See my tutorial to learn 
how to so this.)  Figure 
8 shows the schematic 
as drawn using the 
“schematic capture” 
package that comes 
with PSpice.  Although 
it is drawn slightly 
differently, you should 
convince yourself that it 
is the same schematic 
as in Figure 5.  The 

 
Figure 7.  Plots of the voltage and current of the voltage supply as a function of time for a 
supply frequency of 104 radians/s.  The current lags behind the voltage by several 
degrees. 

 
Figure 8.  PSpice schematic of the same circuit shown in Figure 5.  Note 
that I had to explicitely specify the ground point, and I also added two 
“probes,” one for the current through the source and the other for the 
source voltage.  The source frequency is not specified, because PSpice 
will scan the frequency over a large range. 
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