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Learning Outcomes

Use the principles of differential calculus to solve engineering
problems.

Determine higher order derivatives.

Locate stationary points and classify their nature.
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Introduction - Rates of change

We have seen that differentiation allows us to calculate the
gradient of a curve at any point, indicating how quickly the
variable on the y -axis is changing as a result of change in the
variable on the x-axis. Therefore, as mentioned previously,
gradients represent rates of change.
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Rates of Change: Physical examples

x-axis y -axis Gradient

Time: t

Displacement: S Velocity: ν =
dS

dt

Velocity: ν Acceleration: a =
dν

dt

Energy: E Power: P =
dE

dt

Charge: q Current: I =
dq

dt

Momentum: p Force: F =
dp

dt

Angular displacement: θ Angular velocity: ω =
dθ

dt

Core topics in Mathematics Applications of Differentiation 4 / 24



Introduction
Rates of Change

Stationary Points
Higher Order Derivatives

Example 1

A projectile is thrown directly upwards such that its vertical
displacement S m changes over time t s in accordance with the
formula:

S = 2.4t − 4.9t2

Determine a formula for its velocity and, hence, the velocity of the
projectile after 4 seconds.
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Example 1 - Solution

First, we differentiate to obtain a formula for the velocity ν at any
time t (do not substitute in t = 4 until after this step is done!)

ν(t) =
dS

dt

=
d

dt

(
2.4t − 4.9t2

)
= 2.4− 9.8t

Then evaluate this at t = 4 to determine the velocity at that time:

ν(t = 4) = 2.4− 9.8× 4 = −36.8 m/s
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Example 2

When charging up, the charge q (C) held by a capacitor varies
with time t (s) such that:

q = 10−7
(
1− e−50t

)

Determine the current flow in the circuit at t = 8 s.
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Example 2 - Solution

Current is the rate of change of charge, so differentiate w.r.t. time:

I (t) =
dq

dt

=
d

dt

(
10−7

(
1− e−50t

) )
= 10−7 × 50e−50t

= 5× 10−6e−50t

Evaluate at t = 8:

I (t = 8) = 5× 10−6e−50×8 = 9.58× 10−180 ≈ 0
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Stationary Points

Consider the curve:
Points A, B and C are all points on
the curve where the gradient is zero:

Stationary points:

dy

dx
= 0

A is a minimum

B is a point of inflection

C is a maximum
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Stationary Points and optimisation

So extreme values (maxima and minima) occur at
stationary points (or at the edge of the range under
consideration).

Finding values of x that provide a maximum or a minimum
value of y may be relevant to an optimisation problems, e.g.
what number of check-out staff will maximise profits?

We can find these by differentiating the function and solving
for “where is the derivative equal to zero?”
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Example 3

The approximate annual cost C (in £100’s) of carrying out
maintenance on a machine part at a frequency of f (per year) is
given by:

C = 5e−0.5f + 0.6f

Determine the maintenance frequency f that will incur the lowest
overall cost, i.e. the optimal maintenance frequency.

Core topics in Mathematics Applications of Differentiation 11 / 24



Introduction
Rates of Change

Stationary Points
Higher Order Derivatives

Example 3 - Solution

As the cost C is the quantity to optimise, we must obtain a
formula for its derivative w.r.t. f :

dC

df
=

d

df

(
5e−0.5f + 0.6f

)
= −2.5e−0.5f + 0.6

Now set this equal to zero, and solve for f :

dC

df
= 0
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Example 3 - Solution

∴ −2.5e−0.5f + 0.6 = 0

∴ e−0.5f =
0.6

2.5
=

6

25
= 0.24

∴ −0.5f = ln(0.24)

∴ f =
1

−0.5
ln(0.24) = −2 ln(0.24) = 2.85 to (2 d.p.)

So 2.85 times per year, which incurs a cost of

C = 5e−0.5×2.85 + 0.6× 2.85 = 2.91 =⇒ £291

This is the only value of f that gives an extreme value of C , but
how can we be sure that it is a minimum specifically?
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Higher Order Derivatives

We can differentiate y = 2x3 once to get the first derivative:

dy

dx
= 6x2

We can differentiate again to obtain the second derivative:

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
6x2
)

= 12x

We could also differentiate for a third and fourth time, etc.:

d3y

dx3
= 12 and

d4y

dx4
= 0
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Higher Order Derivatives

For an engineering application, acceleration a(t) is the 2nd order
derivative of displacement S(t), since:

ν =
dS

dt
and a =

dν

dt

hence,

a =
d

dt
(ν) =

d

dt

(
dS

dt

)
=

d2S

dt2
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Higher Order Derivatives

2nd order derivatives are used to classify stationary points.

Second derivative test

If y = f (x) has a stationary point at x = a then:

if
d2y

dx2
< 0 at x = a then it is a maximum point at a.

if
d2y

dx2
> 0 at x = a then it is a minimum point at a.

if
d2y

dx2
= 0 at x = a then the nature is unknown and

needs further investigation.
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Example 4

For a limited speed range, the torque-speed relationship for an AC
induction motor is approximated by the formula:

τ = −0.0016ω3 + 0.17ω2 − 3.4ω + 250

where τ is the torque generated as a percentage of full-load torque
and ω is (angular) speed as a percentage of synchronous (angular)
speed.

Find the maximum and minimum torque points and check the
result with a plot of τ against ω.
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Example 4 - Solution I/VI

To obtain extreme values of τ , we first differentiate it w.r.t. ω:

dτ

dω
=

d

dω

(
− 0.0016ω3 + 0.17ω2 − 3.4ω + 250

)
= −0.0048ω2 + 0.34ω − 3.4

Set dτ
dω = 0 and solve for ω:

−0.0048ω2 + 0.34ω − 3.4 = 0

∴ −48ω2 + 3400ω − 34000 = 0 simplifying . . .

∴ 6ω2 − 425ω + 4250 = 0
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Example 4 - Solution II/VI

Now use the quadratic formula with a = 6, b = −425, c = 4250:

ω =
−(−425)±

√
(−425)2 − 4× 6× 4250

2× 6

=
425±

√
78625

12

=
425± 280.4015

12

= 12.0499 or 58.7835

So these values of ω are the “locations” of the extreme values of τ
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Example 4 - Solution III/VI

Substitute these values into the original function to determine the
extreme values of τ that occur at these points:

τ(ω = 12.0499) = −0.0016(12.0499)3 + 0.17(12.0499)2

−3.4(12.0499) + 250

= 230.9149 . . .

and

τ(ω = 58.7835) = −0.0016(58.7835)3 + 0.17(58.7835)2

−3.4(58.7835) + 250

= 312.5869 . . .
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Example 4 - Solution IV/VI

To confirm the classifications, find the second derivative:

d2τ

dω2
=

d

dω

(
dτ

dω

)

=
d

dω

(
− 0.0048ω2 + 0.34ω − 3.4

)
= −0.0096ω + 0.34

And evaluate this at each stationary point.
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Example 4 - Solution V/VI

d2τ

dω2

∣∣∣∣
ω=12.0499

= −0.0096× 12.0499 + 0.34 = +0.2243 > 0

So at ω = 12.05 there is a minimum of τ = 230.91.

d2τ

dω2

∣∣∣∣
ω=58.7835

= −0.0096× 58.7835 + 0.34 = −0.2243 < 0

Confirming that at ω = 58.78 there is a maximum of τ = 312.59.
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Example 4 - Solution VI/VI

Plotting this function in Excel or MATLAB to check our results:
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Global vs. Local extrema

Recall our original curve:

Stationary points A and C are
either the maximum or
minimum in a “neighbourhood”
around that point.

But stationary points may not be the
largest or smallest overall. Hence,
they are called “local” extrema.

In this case, the endpoints give the
max and min overall values of the
function over the range shown.
These are the “global” extrema.

Stationary points may or may not
be global extrema, depending on the
function and range.
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