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Introduction

Learning Outcomes

@ Perform additional matrix operations such as determining the
inverse, transpose and determinant (if they exist).

@ Solve systems of linear simultaneous equations using matrices.
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Introduction

Transpose of a Matrix

Taking the transpose of a matrix causes the 1t row to become the
first column, the 2" row to become the second column, etc.

For example, if

Then
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Determinant

Determinants

Square matrices (with dimensions n x n) have a property called
the determinant.

The determinant of matrix A can be denoted by det(A) or |A|.

For a 2 x 2 matrix A, the determinant is very simple to calculate
by multiplying the diagonal entries:

Determinant of a 2 x 2 matrix:

det(A) = |7 ©

‘:ad—bc
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Determinant

Example: determinant of a 2 x 2 matrix

Given the square matrix

The determinant is given by:
det(B) = 3x2—(-1)x4
= 6+4

= 10
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The Identity Matrix and Inverse Matrices

|dentity Matrices

Identity matrices are square matrices in which all elements are zero
except for the elements on the leading diagonal; these are all 1, e.g.

1 00
I:<é (1)> or I=10 1 0
0 01

Pre/post-multiplying by | has no impact, i.e.

Al=A and [A=A
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The Identity Matrix and Inverse Matrices

Inverse matrix

For a square matrix A, there may exist an inverse matrix A~!

Inverse Matrix

AA =] and AT'A=1

So an inverse matrix is analagous to the reciprocal of a number -
it's what you multiply by to get back to 1 (or the identity):

1
hx = =1
5

AxA =1

Core topics in Mathematics Further Matrices and their Applications



The Identity Matrix and Inverse Matrices

Calculating the inverse of a 2 X 2 matrix

For a general 2 x 2 square matrix A = <i 3)

Inverse of a 2 X 2 matrix

1 d —b 1 (d —b
-1 _ &
A= d b (—c a ) o A= (—c a )

If the determinant of a square matrix is equal to zero, then
that matrix has no inverse!
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The Identity Matrix and Inverse Matrices

Example: Inverse of a 2 x 2 matrix

To find (if it exists) the inverse of 2 x 2 square matrix A:

1 -1
= (o )
First obtain the determinant:

det(A) = (1)(2) — (=1)(0) =2

Then as the determinant is non-zero, the inverse exists and is:

2= G (0 1) =20 1)= (0 172)
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The Identity Matrix and Inverse Matrices

Exercise: Inverse of a 2 X 2 matrix

For the following square matrices, find the determinant and the
inverse matrix if it exists:
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The Identity Matrix and Inverse Matrices

Solution: Inverse of a 2 X 2 matrix

B = wamea o 1) ~ G 1)

det(€) = (1)(-1)-(1)(-1) = 0

Hence C has zero determinant = its inverse does not exist.
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Simultaneous Equations

Motivation

Many engineering problems can be modelled as a system of
simultaneous equations.

For example, let's say that there are two materials A and B, whose
densities are unknown. You have two samples of different
composites of these: one is 15% A and 85% B and has a density
of 1kgm~3, while the other is 40% A and 60% B but twice as
dense. This could be written as:

0.15A+0.85B =1
0.4A+0.6B =2

We wish to determine the densities of the constituents A and B.
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Simultaneous Equations

Introduction

This is an example of a pair of simultaneous linear equations.
Another example:

3x+2y =16
—Xx+4y =7

We will learn to solve them (i.e. find the unique values of x and y
for which both equations are true) using a matrix method.
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Simultaneous Equations

Method (1)

Given a pair of simultaneous equations, ensure they are in this

form first:
ax+ by =p

cx+dy =gq

@ Then write the pair of equations as a matrix equation:

(213)-(2)
a0

AX =B
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Simultaneous Equations

Method (2)

b
d
vector X contains x and y which we want to find.

@ So the square matrix of coefficients is A = > and the

@ Calculate the inverse matrix A~*

© Pre-multiply both sides by the inverse matrix to obtain X:
AX=B = A'AX=A"B = X=A'B

@ From the entries in vector X, read off the values of x and y.

© Substitute the values of x and y back into the original
equations to verify solutions.
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Simultaneous Equations

Example 1 (1/11)

Solve for x and y:

5x+2y =10
4x — 3y =14

Re-writing this as a matrix equation,

(¢ %) 0)- ()

so we have AX = B, where

(05 x=() o)
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Simultaneous Equations

Example 1 (11/11)

cae- 2 (3 ) (9)-(2)

Thus we find x = 58/23 and y = —30/23.
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Simultaneous Equations

Example 2

Solve for x and y:

3x =7+ by
4y +2x =20
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Simultaneous Equations

Example 2 - Solution (I/II)

First, re-write both of these in a consistent format:

3x -5y =7
2x+4y =20

Re-writing this as a matrix equation,

:2)0)-()

so we have AX = B, where

A= 7) x=() 2= (%)

Core topics in Mathematics Further Matrices and their Applications



Simultaneous Equations

Example 2 - Solution (11/11)

Then,

and so

o549 (3 (3

Thus we find x = 64/11 and y = 23/11.
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Simultaneous Equations

Special cases

A linear equation ax + by = d can be re-written in the form
y = mx + c. In other words, we have been trying to find the
co-ordinates of the point where two straight lines intersect.

What if the pair of lines are parallel or actually ?

Y

.____i 2

In these cases (zero solutions or ), the
matrix of coefficients will be uninvertible (its determinant = 0).
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Simultaneous Equations

Special cases

If the matrix of coefficients has determinant = 0, examine the two
equations and determine if they are the same equation
(infinitely-many solutions), or if they are contradictory (zero

solutions).
x—3y =10
2x — b6y =20
—2x+4+y=3
4x — 2y =17

The first pair are the same, and the second pair are contradictory.
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Simultaneous Equations

Exercises

Use the matrix method to solve the following systems of
simultaneous equations:

(a) Tx+2y =4
3x —by =6

(b) 5x =10+ 2y
3x+4y =6

8 12

(<) 24+~ ==
X bs

—4y =x+5
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