Introduction Graphs of Polynomials Linear Graphs Excel

Linear Functions

Core topics in Mathematics

Lecture 5

Learning Outcomes

- Recognise polynomials
- Interpret linear equations
- Recognise typical shapes of polynomial graphs (constant and linear)
- Plot linear graphs using Excel

Function notation

A function tells us how one variable depends on (possibly multiple) others. For example, $y = 3x^2 + 8x - 7$. Here the **independent variable** is x and the **dependent variable** is y; we say that y is dependent upon x. That is, the value of y depends on the value of x that we put in.

We could also express the function as:

$$y(x) = 3x^2 + 8x - 7,$$

 $f(x) = 3x^2 + 8x - 7,$

 $g(x) = 3x^2 + 8x - 7$, etc

Here the independent variable is explicitly x, and the function is named y, f, or g

Polynomials

- A **polynomial function** is one that *only* involves non-negative integer powers of *x*, for example:
 - y = 7x + 4 (polynomial of order/degree 1, linear)
 - $y = 3x^2 5x 1$ (polynomial of order/degree 2, quadratic)
 - $y = -x^3 + 5x^2 7x + 12.01$ (poly. of order/degree 3, cubic)
- Functions containing negative or non-integer powers, or other function such as trigonometric) are not polynomials, e.g.

•
$$y = x^2 + 4\sqrt{x} - 5$$
 $y = \frac{5}{x^2} - 7x^3 + 6x - 4$

• $y = x^2 + \sin(x)$

Graphs of Polynomials: Constant functions

Graphs of **constant functions** (no dependency on x) are always straight, horizontal lines.

Graphs of Polynomials: Linear functions

Graphs of **linear functions** are always straight lines. (We will look at quadratics later.)

To plot graphs manually we first have to define the x range, if not already specified. Then we need to calculate the value of the function, y, for the specific values of x.

Х	у
-1	
0	
1	
2	
3	
4	
5	

To plot graphs manually we first have to define the x range, if not already specified. Then we need to calculate the value of the function, y, for the specific values of x.

Х	у
-1	5(-1)+3=-2
0	
1	
2	
3	
4	
5	

To plot graphs manually we first have to define the x range, if not already specified. Then we need to calculate the value of the function, y, for the specific values of x.

Х	у
-1	-2
0	3
1	
2	
3	
4	
5	

To plot graphs manually we first have to define the x range, if not already specified. Then we need to calculate the value of the function, y, for the specific values of x.

X	у
-1	-2
0	3
1	8
2	
3	
4	
5	

To plot graphs manually we first have to define the x range, if not already specified. Then we need to calculate the value of the function, y, for the specific values of x.

Х	у
-1	-2
0	3
1	8
2	13
3	18
4	23
5	28

We can then plot the (x, y) coordinates on a graph:

Х	у
-1	-2
0	3
1	8
2	13
3	18
4	23
5	28

We can then plot the (x, y) coordinates on a graph:

X	у
-1	-2
0	3
1	8
2	13
3	18
4	23
5	28
	1

Equation of a straight line

$$y = mx + c$$

where m and c are constants, represents a straight line.

m is the gradient (slope) of the line and can be calculated as

$$m = \frac{\text{vertical change (rise)}}{\text{horizontal change (run)}} = \frac{\Delta y}{\Delta x}$$

c is the value of y when the line crosses the y-axis (at x = 0), known as the y-intercept.

Note: to find where the line crosses the x-axis, simply let y = 0.

Example: Find the equation of this line:

First, we can see that c=1 as this is the height where the *y*-axis is crossed.

Example: Find the equation of this line:

First, we can see that c=1 as this is the height where the *y*-axis is crossed.

Example: Find the equation of this line:

First, we can see that c=1 as this is the height where the y-axis is crossed.

and
$$m = \frac{rise}{run} = \frac{8}{4} = 2$$

$$\therefore$$
 $y = 2x + 1$

Note that if the straight line graph is *decreasing* then we expect a **negative gradient**.

This is because the "rise" will actually be a fall - a decrease in y.

This time the gradient is negative as there is a decrease from left to right:

$$m = \frac{rise}{run} = \frac{-40}{8} = -5$$

Using Excel to plot a function allows us to automate the process.

Using Excel to plot a function allows us to automate the process.

Using Excel to plot a function allows us to automate the process.

Using Excel to plot a function allows us to automate the process.

