Quadratic functions

Core topics in Mathematics

Lecture 6

Learning Outcomes

- Recognise quadratic functions.
- Recognise typical shapes of quadratic graphs.
- Solve quadratic equations.

We previously introduced polynomial functions. Apart from constant functions, the simplest was a linear equation with highest power x^1 (describing a straight line). The next simplest are second-order polynomials:

Quadratic equation

$$y = ax^2 + bx + c,$$

where a, b and c are constants and $a \neq 0$

This represents a curve with a single turning point, called a parabola. All quadratics can be represented in this general form.

There are two types, depending on the value of a.

When a > 0 the curve is \cup -shaped

When a < 0 the curve is \cap -shaped

When trying to visualise a quadratic function, consider:

- What is the orientation?
 - a > 0: upturned.
 - a < 0: downturned.
- Is it broad or narrow compared to $y = x^2$?
 - |a| > 1: narrower.
 - |a| < 1: broader.
- Where is the turning point?
 - Positive c will push it up.
 - Negative c will push it down.
 - Positive or negative b will push it down if a > 0 (up if a < 0).
 - b = 0: on the y-axis.
 - b > 0: left of the y-axis if a > 0 (right if a < 0).
 - b < 0: right of the y-axis if a > 0 (left if a < 0).

The constant c is the y-intercept, as in the linear case (if x=0 then the equation becomes $y=a\times 0^2+b\times 0+c=c$).

The curve can cross the x-axis (at y=0) twice, once (just touching it) or never. If it does cross the x-axis, we can calculate the values of x where this occurs by solving:

$$ax^2 + bx + c = 0$$

The **solutions** of $0 = ax^2 + bx + c$ are the same as the x-intercepts of $y = ax^2 + bx + c$ and are also known as the **roots** of $ax^2 + bx + c$.

Factorisation

There are two ways to solve a quadratic equation. Sometimes we can "factorise", which is the reverse of expanding brackets. If a=1, then we seek two numbers that multiply to c and add to b.

Example:

$$x^2 + 4x + 3 = 0$$
 What pair multiplies to 3 and adds to 4?
 $x^2 + 3x + 1x + 3 = 0$ 3 and 1 of course!
 $(x+3)(x+1) = 0$

This means that either x+3=0, so x=-3, or that x+1=0 so x=-1. This approach isn't always possible, so the most reliable method to use (which *always* works!) is...

The Quadratic Formula

The quadratic formula:

If $ax^2 + bx + c = 0$ and $a \neq 0$ then:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

The **discriminant** is the "bit under the square root." It indicates how many roots exist and of what type:

- $b^2 4ac > 0$ indicates two real and distinct roots $(x_1 \text{ and } x_2)$
- $b^2 4ac = 0$ indicates real and repeated roots $(x_1 = x_2)$
- $b^2 4ac < 0$ indicates complex roots $(x = \alpha + j\beta)$

Example

Let's use this method to solve the same equation as before:

$$x^2 + 4x + 3 = 0$$

In this case, the constants are a=1, b=4 and c=3, so we substitute these into the formula:

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 3}}{2 \times 1} = \frac{-4 \pm \sqrt{16 - 12}}{2}$$
$$= \frac{-4 \pm \sqrt{4}}{2} = \frac{-4 \pm 2}{2} = -2 \pm 1$$

Thus, the solutions are x = -3 and x = -1, as we had found by factorisation.

Roots and Discriminants

Furthermore, if there are two distinct, real roots x_1 and x_2 to the quadratic $y = ax^2 + bx + c$, then it is possible to re-write the quadratic in the form:

$$y = a(x - x_1)(x - x_2)$$

However, if there are real and repeated roots, $x_1 = x_2$, then it is possible to re-write the quadratic in the form:

$$y = a(x - x_1)^2$$

Exercises

Determine the roots of the following quadratics:

1)
$$y = 3x^2 + 13x - 10$$

2)
$$y = x^2 - 14x + 49$$

3)
$$y = x^2 + 6x + 34$$

Factorise the following quadratics:

4)
$$y = x^2 + 7x + 12$$

5)
$$y = x^2 - 10x + 25$$

Exercises - Solutions: $y = 3x^2 + 13x - 10$

1) Here, the coefficients are a=3, b=13 and c=-10. Using the formula:

$$x = \frac{-13 \pm \sqrt{13^2 - 4 \times 3 \times -10}}{2 \times 3}$$

$$= \frac{-13 \pm \sqrt{289}}{6} \quad \text{Positive discriminant.}$$

$$= \frac{-13 \pm 17}{6}$$

$$= \frac{4}{6} \quad \text{or} \quad -\frac{30}{6}$$

$$= \frac{2}{3} \quad \text{or} \quad -5 \quad \text{So we have two distinct roots.}$$

Exercises - Solutions: $y = x^2 - 14x + 49$

2) Here, the coefficients are a=1, b=-14 and c=49. Using the formula:

$$x = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \times 1 \times 49}}{2 \times 1}$$

$$= \frac{14 \pm \sqrt{0}}{2}$$
 Discriminant is zero.
$$= \frac{14 \pm 0}{2}$$

$$= \frac{14}{2}$$

7 This time we have one repeated solution.

Exercises - Solutions: $y = x^2 + 6x + 34$

3) Here, the coefficients are a=1, b=6 and c=34. Using the formula:

$$x = \frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times 34}}{2 \times 1}$$

$$= \frac{-6 \pm \sqrt{36 - 136}}{2}$$

$$= \frac{-6 \pm \sqrt{-100}}{2}$$
 Discriminant is negative.

There are no real solutions - we can't proceed any further. This corresponds to a parabola that sits above the *x*-axis and never touches it.

Exercises - Solutions: $y = x^2 + 7x + 12$

4) Solving by the quadratic formula:

$$x = \frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times 12}}{2 \times 1}$$
$$= \frac{-7 \pm \sqrt{1}}{2}$$
$$= \frac{-7 \pm 1}{2}$$
$$= -4 \text{ or } -3$$

Thus we can factorise as:

$$y = 1(x - (-3))(x - (-4))$$

= $(x + 3)(x + 4)$

Exercises - Solutions: $y = x^2 - 10x + 25$

5) Solving by the quadratic formula:

$$x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 1 \times 25}}{2 \times 1}$$

$$= \frac{10 \pm \sqrt{0}}{2}$$

$$= \frac{10 \pm 0}{2}$$

$$= 5 \text{ (repeated)}$$

Thus we can write the factorised quadratic function as:

$$y = 1(x-5)^2 = (x-5)^2$$

Observe that -5 and -5 multiply to 25 and add to -10 as required.

Determining the Quadratic Equation from a Graph

There are two ways to do this:

Method 1

We can see the roots are $x_1 = -2$ and $x_2 = 5$, which means in factorised form the quadratic equation is:

$$y = a(x+2)(x-5)$$

= $a(x^2-3x-10)$

We would need to substitute in another point (e.g. the *y*-intercept) to confirm that the value of *a* is 1 in this case.

Determining the Quadratic Equation from a Graph

Method 2

We can see that the *y*-intercept is -10.

$$\therefore y = ax^2 + bx - 10$$

Now, if we choose two coordinates, e.g. (-1, -6) and (6, 8), we can solve $y = ax^2 + bx - 10$ simultaneously. We will learn more on this later.

Using Excel to Plot Polynomials

To plot higher order functions we make use of the \land symbol, which means to the power of.

Example: To plot $y = x^2 + x - 6$:

~		Art				
	Tables	Illustrations				
SUM		▼ (* X √ f _x =A2^2+A2-6				
	Α	В		С		D
1	x	t				
2	-5	= <mark>A2^</mark> 2+	A 2	-6		
3	-2	ŀ	6			
4	-3	3	0			
5	-2	2	-4			
6	-1	-	-6			
7	C)	-6			
8	1	-	-4			
9	2	2	0			
10	3	3	6			