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1 BIDMAS and fractions

1.1 Learning Outcomes

• Communicate calculations to technology.

• Understand the rules of BIDMAS.

• Performcalculations(addition, subtraction,multiplication,division)withfractions.

1.2 Communicating with Technology

In order to effectively communicate with technology (calculators, Excel, computer algebra
systems (CAS), etc.) you need to know how it interprets the information you provide.

For example, how would you tell a calculator or Excel to compute the following?

9− 3

5
× 24

1.3 BIDMAS

BIDMAS is an acronym to help you remember the correct order of operations. This
is the unambiguous way in which software evaluates a complicated calculation. It stands
for:

• Brackets

• Index (powers and roots)

• Division and Multiplication,

• Addition and Subtraction.

Highest priority is given to brackets while lowest priority is given to addition and sub-
traction. Division and multiplication have the same priority level, as do addition and
subtraction.

9



1.3.1 Example of BIDMAS

If we wish to evaluate:

10 + 5× 4

We must first perform the multiplication, then the addition:

10 + 5× 4

= 10 + 20

= 30

A common error is to perform the sum from left to right, i.e. 15 × 4 = 60. But say four
people visited a theme park. It cost £5 each to enter and there’s a fixed car park fee of £10.
What would you expect to pay in total for entry? Not £60!

BIDMAS means that we can use brackets to tell our technology to do a particular cal-
culation first, e.g.

9− 3

5
× 24 (1)

should be written in a calculator or Excel, etc. as:

(9− 3)/5× 24 =
6

5
× 24 =

6

5
× 16 = 19.2

Note that modern calculators have a fraction button which means that the sum can be
input as in equation 1.

10



The web-based CAS Wolfram Alpha gives an interpretation of your entry (under “input”)
in addition to the answer to your calculation.
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1.4 Fractions

1.4.1 Working with Fractions: Addition and Subtraction

Fractions may be added/subtracted if every denominator is the same, e.g.

4

7
+

2

7
=

6

7

and

1

3
− 2

3
+

5

3
=

4

3

If the denominators are not the same, then we must first make them so, by scaling both
numerator and denominator of one or both of the fractions by an appropriate amount.

Example 1:

3

5
− 1

2
=

3× 2

5× 2
− 1× 5

2× 5

=
6

10
− 5

10

=
1

10

Example 2:

2

5
+

7

15
=

2× 3

5× 3
+

7

15

=
6

15
+

7

15

=
13

15

12



1.4.2 Working with Fractions: Mixed Fractions

We may also have to deal with mixed fractions (a combination of a whole number and
a fraction less than 1). In this case, we can convert it to an “improper” or “top-heavy”
fraction:

4
5

6
= 4 +

5

6

=
4

1
+

5

6

=
4× 6

1× 6
+

5

6
=

24

6
+

5

6

=
29

6

1.4.3 Working with Fractions: Multiplication

The following rule can be used to deal with all multiplications:

Multiplying fractions:

a

b
× c

d
=
ac

bd

For example:

4

9
× 3

5
=

4× 3

9× 5
=

12

45
=

4

15

13



1.4.4 Working with Fractions: Division

The following rule can be used to deal with all divisions:

Fraction Division:

a

b
÷ c

d
or

a

b
c

d

=
a

b
× d

c
=

ad

bc

For example:

3

7
2

5

=
3

7
× 5

2
=

3× 5

7× 2
=

21

10
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2 Indices

2.1 Learning Outcomes

• Use rules of indices.

2.2 Indices

Indices are also known as exponents, powers and orders. The index of a number is simply
the power to which you are raising it, e.g. the index of 34 is 4 (the “base” is 3).

If no index is given then the index must be 1.

Example:

5 = 51 and x = x1

You will need to know how to interpret and simplify various expressions involving indices.

2.3 Rules of Indices

When multiplying identical bases, we can use the rule:

Multiplying indices:

am × an = am+n

Example:

43 × 45 = 4× 4× 4 × 4× 4× 4× 4× 4 = 48

Or more simply using this rule:

43 × 45 = 43+5 = 48

When dividing identical bases, we can use the rule:

15



Dividing indices:

am ÷ an or
am

an
= am−n

Example:

65

62
=

6× 6× 6× 6× 6

6× 6
= 6× 6× 6 = 63

Or more simply using this rule:

65

62
= 65−2 = 63

Now consider the expression
(
a6
)2

(
a6
)2

= (a× a× a× a× a× a)2

= (a× a× a× a× a× a)× (a× a× a× a× a× a)

= a× a× a× a× a× a× a× a× a× a× a× a

= a12

It turns out that another rule is:

(a6)2 = a12 = a6×2

So we obtain a general rule for powers of powers:

Powers of indices:

(
am
)n

= am×n =
(
an
)m

16



Example:(
5.030.75

)1.8
= 5.030.75×1.8 = 5.031.35 = 8.85 (2 d.p.)

Confirm this on your calculator: check both
(
5.030.75

)1.8
and 5.031.35

Now consider the expression
a2

a6
. We already know that:

a2

a6
= a2−6 = a−4

However:

a2

a6
=

aa

aaaaaa
=

1

aaaa
=

1

a4

Therefore, we may conclude that another rule is:

a−4 =
1

a4

Negative indices:

a−m =
1

am

Negative indices denote reciprocals.

Example:

2−3 =
1

23
=

1

8

Now consider the expression
a2

a2
. We know that:

a2

a2
= a2−2 = a0

17



But it is also true that:

a2

a2
=
aa

aa
= 1

Therefore, we can conclude that:

a0 = 1

This is again a general rule, that any number raised to the power of zero is exactly one:

Zero index:

a0 = 1

Example:

170 = 1 π0 = 1
(
47.01π + 13

)0
= 1

(
zy − d

)0
= 1

Finally, consider the expression a
1
2 a

1
2 . We know that:

a
1
2 a

1
2 = a

1
2
+ 1

2 = a1 = a

But this is also the definition of square roots:

2
√
a 2
√
a = a

Therefore, we can conclude that:

a
1
2 =
√
a

This is true not just for square roots, but more generally for nth-roots:

18



Fractional indices:

a
1
n = n
√
a

Example:

64
1
3 =

3
√

64 = 4

We also know that:

( n
√
a)m = (a

1
n )m = a

1
n
×m = a

m
n

Therefore, we can conclude that:

a
m
n = ( n

√
a)m = n

√
am

So fractional indices indicate roots and powers.

Example:

25
3
2 = (

√
25)3 = 53 = 125

2.4 Summary

For any numbers a,m, n:

Rules of indices:

am × an = am+n

am ÷ an = am−n

(am)n = am×n

a−n =
1

an

a
1
n = n
√
a and a

m
n = n

√
am

a0 = 1 and a1 = a

We will use these rules constantly throughout the module. You must come to know them
instinctively.
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3 Solving and transposing equations

3.1 Learning Outcomes

• Solve equations.

• Transpose equations.

• Addressing some of the most common difficulties that arise in algebraic manipula-
tion.

3.2 Transposing and Solving Equations

Transposition is the process of rearranging an equation into a different form using logi-
cally valid steps.

All steps in transposition originate from a single logical principle:

If two initially equal things are changed in an identical manner, then they must still
be equal after the change.

This means we can make changes to, say, the left-hand side (LHS) of an equation, provided
we make precisely the same change to the right-hand side (RHS) also.

General principles are to:

• Get rid of fractions by multiplying.

• Get rid of brackets by expanding.

• Gather all terms with the unknown to one side by addition/subtraction.

• Remove everything else to the other side by addition/subtraction.

• Use division to leave the unknown by itself.

But this is a skill mainly acquired by practising many examples.
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3.3 Examples

Example 1:

Solve 2x− 4 = 10 for x.

First, we add +4 to both sides to remove the -4 term on the LHS:

2x− 4+4 = 10+4

∴ 2x = 14 Now 2x is alone.

∴
2x

2
=

14

2
Remove the factor of 2 by division.

∴ x = 7

Example 2:

Solve 3x+ 4 = 31.

3x+ 4−4 = 31−4 Subtract away the +4 on the LHS.

∴ 3x = 27 Now the only x-term is alone.

∴
3x

3
=

27

3

∴ x = 9
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Example 3:

Solve 5x− 6 = 3x− 8.

5x− 6−3x = 3x− 8−3x Gather the x-terms on LHS.

∴ 2x− 6 = −8

∴ 2x− 6+6 = −8+6 Remove the other term.

∴ 2x = −2

∴
2x

2
=
−2

2
Divide away the factor of 2.

∴ x = −1

Example 4:

Solve 2(3x− 7) + 4(3x+ 2) = 6(5x+ 9) + 3.

First, always expand all the brackets. Then we will gather the x-terms and the constants
together:

6x− 14 + 12x+ 8 = 30x+ 54 + 3

∴ 18x− 6 = 30x+ 57

∴ 18x− 6−30x = 30x+ 57−30x

∴ −12x− 6 = 57

Now proceeding as in previous examples:
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−12x− 6 = 57

∴ −12x− 6+6 = 57+6

∴ −12x = 63

∴
−12x

−12
=

63

−12

∴ x = −63

12
or − 5.25

Example 5:

Solve µ = u+ at for a.

µ−u = u+ at−u

∴ µ− u = at

∴
µ− u
t

=
at

t

∴
µ− u
t

= a

Or rather:

a =
µ− u
t
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Example 6:

Solve
2 + t

3
= 2(t− k) for t.

3×(2 + t)

3
= 3×2(t− k)

∴ 2 + t = 6(t− k)

∴ 2 + t = 6t− 6k

∴ 2 + t−6t = 6t− 6k−6t

∴ 2− 5t = −6k

∴ 2− 5t−2 = −6k−2

∴ −5t = −6k − 2

∴
−5t

−5
=
−6k − 2

−5

t =
−6k − 2

−5

The solution could also be written as:

t =
6k + 2

5

Or:

t =
2(3k + 1)

5

Or:

t =
2

5
(3k + 1)
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There are often multiple ways to present the solution.

Example 7:

Solve
1

f
=

1

u
+

1

µ
for µ.

First, let’s get the term containing µ on its own:

1

f
−1

u
=

1

u
+

1

µ
−1

u

∴
1

f
− 1

u
=

1

µ

Now multiply both sides by µ to get it out of the denominator:

µ

(
1

f
− 1

u

)
= µ

1

µ

∴ µ

(
1

f
− 1

u

)
= 1

∴
µ

(
1

f
− 1

u

)
1

f
− 1

u

=
1

1

f
− 1

u

∴ µ =
1

1

f
− 1

u

Often there are many paths that can be taken to the solution. Let’s now see an alternative

approach to solving
1

f
=

1

u
+

1

µ
for µ.
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Begin by multiplying all terms by µ to remove it from the denominator, then gather to-
gether all resulting terms that contain µ:

µ× 1

f
= µ×1

u
+ µ× 1

µ

∴
µ

f
=
µ

u
+ 1

∴
µ

f
−µ
u

=
µ

u
+ 1−µ

u

∴
µ

f
− µ

u
= 1

∴ µ

(
1

f
− 1

u

)
= 1

∴
µ

(
1

f
− 1

u

)
1

f
− 1

u

=
1

1

f
− 1

u

∴ µ =
1

1

f
− 1

u

=
1

u− f
fu

=
fu

u− f

In ther final step we have simplified the “fractions inside a fraction” by multiplying both
the numerator and denominator of the main fraction by the common denominator of the
internal fractions. We never want to have nested fractions in our final solution - they can
always be simplified in this way.
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Example 8:

SolveA = 2πr2 + 2πrh for h.

Start by isolating the term containing h:

A−2πr2 = 2πr2 + 2πrh−2πr2

∴ A− 2πr2 = 2πrh

∴
A− 2πr2

2πr
=

2πrh

2πr

∴
A− 2πr2

2πr
= h

Thus,

h =
A− 2πr2

2πr
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Example 9:

Solve T = 2π

√
L

g
for L.

In this case, the desired variable L is contained inside a root. We first need to isolate
the root, by dividing both sides by 2π:

T

2π
=

2π

2π

√
L

g

∴
T

2π
=

√
L

g

Now that the entire right-hand side consists of a square root, we can extract L by taking
the square of both sides:

(
T

2π

)2

=

(√
L

g

)2

∴

(
T

2π

)2

=
L

g

∴

(
T

2π

)2

=
L

g

∴

(
T

2π

)2

×g =
L

g
×g

∴ g

(
T

2π

)2

= L

Hence,

L = g

(
T

2π

)2
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3.4 More challenging examples

Example 1

Solve:

1

x
− 2y + 1

3
= 5y

for x

Solution:

1

x
− 2y + 1

3
= 5y

What do we need to consider in this example?

• Remember that the minus sign applies to all of (2y + 1)/3, not just the 2y.

• Start by multiplying away all of the fractions.

• Only gather like terms after that.

1

x
− 2y + 1

3
= 5y

Multiply all terms by x to get rid of the first fraction:

x

(
1

x

)
− x
(

2y + 1

3

)
= x

(
5y
)

∴
1

1
− x(2y + 1)

3
= 5xy

∴ 1− x(2y + 1)

3
= 5xy

Now multiply all terms by 3 to get rid of the remaining fraction:
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3
(
1
)
− 3

(
x(2y + 1)

3

)
= 3
(
5xy
)

∴ 3− x(2y + 1) = 15xy

∴ 3− 2xy − x = 15xy

Finally, gather all terms containing x together and simplify:

15xy + 2xy + x = 3

∴ 17xy + x = 3

∴ x(17y + 1) = 3

∴ x =
3

17y + 1

Re-writing 17xy + x as x(17y + 1) is called factorisation, which we shall practice more
in this section.
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Example 2

The following formula arises in the study of relativistic motion.

T =
T0(

1− v2

c2

)1/2
In this case, c denotes the speed of light (3 × 108 m/s). How is it related to the other
variables?

Solution:

T =
T0(

1− v2

c2

)1/2
Begin by multiplying both sides by the denominator of the fraction:

T

(
1− v2

c2

)1/2

= T0

Undo the power of 1/2 by squaring both sides of the equation:

(
T

(
1− v2

c2

)1/2)2

=
(
T0
)2

∴ T 2

(
1− v2

c2

)
= T 2

0

Divide both sides by T 2:

1− v2

c2
=
T 2
0

T 2

Isolate the term containing c:

−v
2

c2
=
T 2
0

T 2
− 1

Now multiply both sides by c2 to extract it from the denominator:

−v2 = c2
(
T 2
0

T 2
− 1

)
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To get c2 alone, divide both sides by the contents of the brackets:

c2 =
−v2

T 2
0

T 2
− 1

This can be simplified slightly by changing the sign of all terms within the fraction:

c2 =
v2

1− T 2
0

T 2

To simplify further, address the subfraction T 2
0 /T

2 by multiplying the numerator and de-
nominator of the main fraction by T 2:

c2 =
v2T 2

T 2 − T 2
0

(We will practice this technique more later.) Finally, take the square root of both sides to
obtain an expression for c:

c =

√
v2T 2

T 2 − T 2
0
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Example 3

The following formula describes the relativistic Doppler shift concerning the changes in
frequency of light due to relative longitudinal motion of a source and observer:

ν ′ = ν

√
1− β√
1 + β

Obtain a formula for β.

Solution:

Divide both sides by ν:

ν ′

ν
=

√
1− β√
1 + β

Now, if we square both sides we can eliminate both square roots:

(
ν ′

ν

)2

=

(√
1− β√
1 + β

)2

=
(
√

1− β)2

(
√

1 + β)2
(Rules of indices!)

=
1− β
1 + β

Now multiply both sides by denominator 1 + β to simplify the fraction:(
ν ′

ν

)2

(1 + β) = 1− β

Expand the brackets and gather like terms (with β):

(
ν ′

ν

)2

+

(
ν ′

ν

)2

β = 1− β

∴

(
ν ′

ν

)2

β + β = 1−
(
ν ′

ν

)2
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Factorise β from the LHS:

β

((
ν ′

ν

)2

+ 1

)
= 1−

(
ν
′

ν

)2

Divide both sides by the contents of the brackets to isolate β and finally simplify the sub-
fractions:

β =

1−
(
ν ′

ν

)2

1 +

(
ν ′

ν

)2 =
1− ν ′2

ν2

1 +
ν ′2

ν2

=
ν2 − ν ′2

ν2 + ν ′2

3.5 Common difficulties in algebraic manipulation

There are some smaller aspects of algebraic manipulation that we have seen in these
examples and which can be tricky. You will need to become comfortable with:

• Manipulating fractions and writing them in different ways.

• Factorisation.

• Simplifying subfractions (fractions within fractions).

3.5.1 Fractions

We can write algebraic fractions in a variety of different ways (combining or separating
their parts by multiplication), as long as all parts maintain their correct position on either
the numerator or the denominator.

For example:

3y

x

can be written correctly as any of the following without changing the meaning:

3× 1

x
× y 3

x
y 3

y

x
(3y)÷ x
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3.5.2 Factorisation

We already know how to expand brackets:

3x(x+ y) = 3x2 + 3xy

Factorisation is the reverse of this process. We look at two or more terms, and ask what
“factors” are shared by all terms?

Factor: the whole numbers or symbols that a term can be perfectly divided by. For
example, 3, 9, x, x2 and any combinations such as 3x, 9x or 3x2 are all factors of 9x2.

Example:

Factorise as much as possible:

3x+ 2xy

The simplest factors of the first term are 3 and x, and those of the second are 2, x and y.

As x is the only common (shared) factor, we can only remove it - leaving behind 3 and 2y
respectively:

3x+ 2xy = x(3 + 2y)

Example: Factorise as much as possible:

12x2 − 8xy2

The simplest factors of the first term are 2 and x, and those of the second are 2, x and y.
However, to factorise fully we want to choose the largest shared factors.

All factors of the first term: 2, 3, 4, 6, 12 and x and x2

All factors of the second term: 2, 4, 8 and x and y and y2.

Therefore the largest common factor is 4x:

12x2 − 8xy2 = 4x(3x− 2y2)

Factorise and simplify as much as possible:
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28

πx
+ 16x

It is good practice when factorising to try to ensure that any fractions are also outside of
the brackets, if this is not overly complicated to achieve.

In this case, in addition to the common factor of 4, we could factor out the πx on the
denominator, which will require multiplying the second term by these in order to maintain
balance.

28

πx
+ 16x = 4

(
7

πx
+ 4x

)
=

4

πx
(7 + 4πx2)

3.5.3 Dealing with subfractions

When we have a fraction where either the numerator or the denominator (or both) them-
selves consist of a fraction, it is always possible to simplify them and express as a simple
fraction.

This can be achieved with explicit fraction division.

For example:

15
4

2
=

15

4
÷ 2 =

15

4
÷ 2

1
=

15

4
× 1

2
=

15

8

Example:

Simplify:

15
y2

x
y

Solution:

15
y2

x
y

=
15

y2
÷ x

y
=

15

y2
× y

x
=

15y

xy2
=

15

xy

As a shortcut, we may instead simply multiply the numerator and denominator of the
main fraction by the denominator of the subfraction(s):

15
y2

x
y

=

15
y2
× y2

x
y
× y2

=
15
xy2

y

=
15

xy
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4 Linear functions

4.1 Learning Outcomes

• Recognise polynomials

• Interpret linear equations

• Recognise typical shapes of polynomial graphs (constant and linear)

• Plot linear graphs using Excel

4.2 Polynomial functions

A polynomial function is one that only involves non-negative integer powers of x, for
example:

• y = 7x+ 4 (polynomial of order/degree 1, linear)

• y = 3x2 − 5x− 1 (polynomial of order/degree 2, quadratic)

• y = −x3 + 5x2 − 7x+ 12.01 (poly. of order/degree 3, cubic)

Functions containing negative or non-integer powers, or other function such as trigono-
metric) are not polynomials, e.g.

• y = x2 + 4
√
x− 5

• y = x2 + sin(x)

• y =
5

x2
− 7x3 + 6x− 4
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4.3 Function notation

To express a function we may write, for example, y = 3x2+8x−7. Here the independent
variable is x and the dependent variable is y; we say that y is dependent upon x. That
is, the value of y depends on the value of x that we put in.

We could also express the function as:

y(x) = 3x2 + 8x− 7

or

f(x) = 3x2 + 8x− 7

or

g(x) = 3x2 + 8x− 7

etc.

Here the independent variable is explicitly x, and the function is named y, f , or g
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4.4 Graphs of Polynomials

Constant functions:

Graphs of constant functions (no dependency on x) are always straight, horizontal
lines.

Linear functions:

Graphs of linear functions are always straight lines.
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4.5 Linear Graphs

To plot graphs manually we first have to define the x range, if not already specified. Then
we need to calculate the value of the function, y, for the specific values of x.

Plot the function y = 5x+ 3 in the range−1 ≤ x ≤ 5.

x y

-1 5(-1)+3 = -2

0 3

1 8

2 13

3 18

4 23

5 28

We can then plot the (x, y) coordinates on a graph:
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4.6 Determining the Linear Equation

Equation of a straight line:

y = mx+ c (2)

wherem and c are constants, represents a straight line.

m is the gradient (slope) of the line and can be calculated as

m =
vertical change (rise)

horizontal change (run)
=

∆y

∆x

c is the value of y when the line crosses the y-axis (at x = 0), known as the y-intercept.

Note: to find where the line crosses the x-axis, simply let y = 0.

Example: Find the equation of this line:

First, we can see that c = 1 as this is the height where the y-axis is crossed.
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and

m =
rise

run
=

8

4
= 2

Thus,

y = 2x+ 1

Note: if the straight line graph is decreasing then we expect a negative gradient.

This is because the “rise” will actually be a fall - a decrease in y.

This time the gradient is negative as there is a decrease from left to right:

m =
rise

run
=
−40

8
= −5
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4.7 Using Excel to Plot Polynomials

Using Excel to plot a function allows us to automate the process.

To plot the linear function y = 7x− 4 in the range 0 ≤ x ≤ 5:
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5 Quadratic functions

5.1 Learning Outcomes

• Recognise quadratic equations.

• Recognise typical shapes of quadratic graphs.

• Solve quadratic equations.

5.2 What are quadratics?

In the last lecture, we discussed polynomials. The simplest kind was a linear equation
with highest power x1 (describing a straight line). The next simplest are second-order
polynomials:

Quadratic equation:

y = ax2 + bx+ c, (3)

where a, b and c are constants and a 6= 0

This represents a curve with a single turning point, called a parabola. All quadratics take
the general form of equation (3).

There are two types, depending on the value of a.

When a > 0 the curve is ∪-shaped:
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When a < 0 the curve is ∩-shaped:

When trying to visualise a quadratic function, consider:

• What is the orientation?

– a > 0: upturned.

– a < 0: downturned.

• Is it broad or narrow compared to y = x2?

– |a| > 1: narrower.

– |a| < 1: broader.

• Where is the turning point?

– Positive cwill push it up.

– Negative cwill push it down.

– Positive or negative bwill push it down if a > 0 (up if a < 0).

– b = 0: on the y-axis.

– b > 0: left of the y-axis if a > 0 (right if a < 0).

– b < 0: right of the y-axis if a > 0 (left if a < 0).

The constant c is the y-intercept, as in the linear case (if x = 0 then the equation becomes
y = a× 02 + b× 0 + c = c).

The curve can cross the x-axis (at y = 0) twice, once (just touching it) or never. If it
does cross the x-axis, we can calculate the values of xwhere this occurs by solving:

ax2 + bx+ c = 0
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The solutions of 0 = ax2 + bx + c are the same as the x-intercepts of y = ax2 + bx + c
and are also known as the roots of ax2 + bx+ c.

5.3 Solving quadratic equations

Factorisation:

There are various ways to solve a quadratic equation. Sometimes we can “factorise”,
which is the reverse of expanding brackets. If a = 1, then we seek two numbers that
multiply to c and add to b.

Example:

x2 + 4x+ 3 = 0 What pair multiplies to 3 and adds to 4?

x2 + 3x+ 1x+ 3 = 0 3 and 1 of course!

(x+ 3)(x+ 1) = 0

This means that either x + 3 = 0, so x = −3, or that x + 1 = 0 so x = −1. This ap-
proach isn’talwayspossible, so themost reliablemethodtouse (whichalways works!) is. . .

The quadratic formula:

The quadratic formula:

If ax2 + bx+ c = 0 and a 6= 0 then:

x =
−b±

√
b2 − 4ac

2a
(4)

The discriminant is the “bit under the square root.” It indicates how many roots exist
and of what type:

• b2 − 4ac > 0 indicates two real and distinct roots (x1 and x2)

• b2 − 4ac = 0 indicates real and repeated roots (x1 = x2)

• b2 − 4ac < 0 indicates complex roots (x = α + jβ)
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Roots and Discriminants:
Furthermore, if thereare twodistinct, real rootsx1 andx2 to thequadraticy = ax2+bx+c,
then it is possible to re-write the quadratic in the form:

y = a(x− x1)(x− x2)

However, if there are real and repeated roots, x1 = x2, then it is possible to re-write the
quadratic in the form:

y = a(x− x1)2

5.4 Examples:

Determine the roots of the following quadratics:

1) y = 3x2 + 13x− 10

2) y = x2 − 14x+ 49

3) y = x2 + 6x+ 34

Factorise the following quadratics:

4) y = x2 + 7x+ 12

5) y = x2 − 10x+ 25

Solutions:

1) Here, the coefficients are a = 3, b = 13 and c = −10.
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Using the formula:

x =
−13±

√
132 − 4× 3×−10

2× 3

=
−13±

√
289

6
Positive discriminant.

=
−13± 17

6

=
4

6
or − 30

6

=
2

3
or − 5 So we have two distinct roots.

2) Here, the coefficients are a = 1, b = −14 and c = 49.
Using the formula:

x =
−(−14)±

√
(−14)2 − 4× 1× 49

2× 1

=
14±

√
0

2
Discriminant is zero.

=
14± 0

2

=
14

2

= 7 This time we have one repeated solution.

3) Here, the coefficients are a = 1, b = 6 and c = 34.
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Using the formula:

x =
−6±

√
62 − 4× 1× 34

2× 1

=
−6±

√
36− 136

2

=
−6±

√
−100

2
Discriminant is zero.

There are no real solutions - we can’t proceed any further. This corresponds to a parabola
that sits above the x-axis and never touches it.

4) Solving by the quadratic formula:

x =
−7±

√
72 − 4× 1× 12

2× 1

=
−7±

√
1

2

=
−7± 1

2

= −4 or − 3

Thus we can factorise as:

y = 1(x− (3))(x− (−4))

= (x+ 3)(x+ 4)

5) Solving by the quadratic formula:

x =
−(−10)±

√
(−10)2 − 4× 1× 25

2× 1

=
10±

√
0

2

=
10± 0

2

= 5 (repeated)

Thus we can write the factorised quadratic function as:

y = 1(x− 5)2 = (x− 5)2

Observe that -5 and -5 multiply to 25 and add to -10 as required.
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5.5 Determining the Quadratic Equation from a Graph

There are two ways to do this:

Method 1

We can see the roots arex1 = −2 andx2 = 5, which means in factorised form the quadratic
equation is:

y = (x+ 2)(x− 5)

= x2 − 3x− 10
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Method 2

We can see that the y-intercept is -10.

∴ y = ax2 + bx− 10

Now, if we choose two coordinates, e.g. (−1,−6) and (6, 8), we can solve y = ax2 +bx−10
simultaneously. We will learn more on this later.
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5.6 Plotting in Excel

To plot higher order functions we make use of the∧ symbol, which means to the power of.

Example:

To plot y = x2 + x− 6:
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6 Exponential and logarithmic functions

6.1 Learning Outcomes

• Recognise logarithmic and exponential functions.

• Sketch logarithmic and exponential functions.

• Apply the laws of logarithms.

• Solve exponential equations.

6.2 Exponential Functions

The general exponential function is of the form:

y = Abkx,

whereA, b, k are constants:

• A is a coefficient and is the value of y when x = 0. This is because if x = 0,
y = Abk×0 = Ab0 = A× 1 = A.

• b is the base.

• k determines how fast the function grows (growth rate).

Certain values for the base b are more common than others, especially:

y = 10x and y = ex = exp(x)

One particular base is very important: e = 2.718281828 . . . , called Euler’s number.

The general form of this type of equation is:
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The Exponential function:

y = AeBx + C

whereA,B andC are constants.

Note, when x = 0, y = A+ C (this is the y-intercept).

6.2.1 Examples

Use your calculator to determine the following:

1) e4

2) 4e7.2

3) 2.9e29.7 + 2.3

6.2.2 Graphs of the Exponential Function

Changing the magnitude ofB affects the gradient.
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ChangingA affects the y-intercept.

Changing bothA andC affect the y-intercept.

Changing the sign of B reflects the ex curve in the y-axis: positive B gives exponential
growth, negativeB gives decay.
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6.2.3 Applications of the Exponential Function

The exponential function is used frequently across engineering.

It is used in growth and decay models such as:

• Tension in belts: T1 = T0e
µθ

• Newton’s law of cooling: θ = θ0e
−kt

• Atmospheric pressure at altitude h: p = p0e
−h/c

• Discharge of a capacitor: q = Qe−t/CR
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6.3 The Logarithm Function

The logarithm function is written as follows:

Logarithm function:

y = loga (x),

where a and x are positive and a 6= 1 is constant.

This can be interpreted as:

“y is the power to which one must raise a (the base), to get x (the argument).”

That is:

ay = x

Example:

What power of 2 is exactly equal to 8?

Answer: 2× 2× 2 = 23 = 8

So, we need exactly 3 “2’s” to get 8. This means that the logarithm of 8, to base 2, is
3. We write this as:

log2(8) = 3

Examples:

Calculate x:

• 3x = 81 ∴ log3(81) = 4

• 6x = 1 ∴ log6(1) = 0

• 2x = 0.125 ∴ log2(0.125) = −3
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So one application of logs is to solve equations where the desired variable is in the index.

The most commonly used bases are 10 and e.

The log button on your calculator is log10. This is the common logarithm.

The ln button on your calculator is loge. This is the natural logarithm and is usually
written ln, so:

loge 6 = ln 6

Engineers mainly deal with the natural logarithm.

6.3.1 Visualising Logarithms

Remember, the input to a log function must be positive.

More generally natural logarithm functions are in the form:

General natural log functions:

y = Aln(x) +B

whereA andB are constants.
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Let’s look at whatA andB influence. . .

ChangingA stretches the curve vertically.

ChangingB shifts the curve vertically.
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6.3.2 Laws of Logarithms

The following are useful for manipulating equations (they are true for any base, as long as
all the logs share the same base).

Laws of logarithms:

log (An) = n log (A)

log (AB) = log (A) + log (B)

log

(
A

B

)
= log (A)− log (B)

log (1) = 0

Examples:

Write each of the following as a single log:

• log10 6 + log10 3 = log10 (6× 3) = log10 18

• ln 6− ln 3 = ln
(
6
3

)
= ln 2

• 2logx= log
(
x2
)

60



6.4 Interaction between Logarithms and Exponentials

The logarithm and exponential functions are the inverses of each other, i.e. one undoes
the impact of the other:

ln(ex) = x and eln(x) = x

For example:

ln(e7) = 7 and eln(15) = 15

Example 1

Solve the equation 25ex = 521 for x:

25ex

25
=

521

25
Isolate ex

ex =
251

25

ln(ex) = ln

(
521

25

)
Use ln to undo the exponential

x = 3.04 to 2 d.p.
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Example 2

Solve the equation 4e−3x + 5 = 12 for x:

4e−3x + 5−5 = 12−5

4e−3x = 7

4e−3x

4
=

7

4

e−3x =
7

4

ln(e−3x) = ln

(
7

4

)

−3x = ln

(
7

4

)
now divide by−3

x = −0.187 to 3 d.p.
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Example 3

A capacitor of capacitance C is allowed to discharge through a resistor of resistance R
such that the voltage across the terminals of the capacitor ν at time t after the discharge
started is given by:

ν = ν0e
− 1

RC
t,

where ν0 is the voltage across the terminals of the capacitor at the start of the discharge.

If C = 500 nF, R = 200 kΩ and ν0 = 12 V, determine the time it takes for ν to drop
to 6 V.

Sub. in the values:

6 = 12e
− t

200×103×500×10−9

Simplifying:

6

12
= e

−t

10−1 =⇒ 1

2
= e−10t

Using ln to invert the exponential:

ln

(
1

2

)
= ln

(
e−10t

)
=⇒ t = − 1

10
ln

(
1

2

)
= 0.069 . . .
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7 Modelling with Functions

7.1 Introduction

In this session, we practice synthesising what we have learned about functions in the con-
text of mathematical modelling of real-world behaviour and systems.

We will also practice some problems that may require us to combine different theories
that we have learned separately.

7.2 Example 1

A consultant charges an upfront cost of £60, and an additional hourly rate of £15/hour
pro rata for services.

If your business has a £250 consulting budget, how long can you hire them for?

Solution:

To formulate this problem mathematically, assign variables t and C to the quantities
of interest - the amount of time that the consultant works for, and how much this will cost.
Formally, let t be the number of hours that the consultant works for, and C(t) the total
cost in pounds of engaging them for time t.

Because the cost C increases at a fixed rate with the amount of time t worked, this is
fundamentally a linear relationship:

C = at+ b

And we need to determine the values of the parameters (constants) a and b.

Because of the initial charge of £60, the initial value ofC(t = 0) = 60, hence:

60 = a(0) + b =⇒ b = 60

And because the value of C increases by 15 with every increase in t by 1 hour, this means
that the gradient a = 15 because this represents the rate of change. Hence:

C(t) = 15t+ 60
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Finally, we want to solve for t such thatC(t) = 250:

250 = 15t+ 60

∴ 15t = 190

∴ t = 190/15 = 12.666 . . .

So we can hire the consultant to work for 12 hours and 40 minutes.

7.3 Example 2

In population dynamics, the logistic function is often used in order to predict the growth
of a population P at time t:

P (t) =
K

1 +
(
K−P0

P0

)
e−rt

whereK, P0 and r are positive constants.

i) How does the population size behave as time increases forever?
ii) A lab technician sets up an experiment with 100 bacteria, and sufficient nutrients to
sustain a maximum population of 50,000. One week later they record a population of
32,000. If this function is a reasonable model of growth, how much longer will it be for the
population to exceed 40,000? Confirm the solution using EXCEL.

Solution:

i) In terms of the variables, this means t → ∞. Since we know r > 0, then e−rt ex-
hibits exponential decay with t, and thus:

e−rt → 0 as t→∞

Hence:
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lim
t→∞

P = lim
t→∞

K

1 +
(
K−P0

P0

)
e−rt

=
K

1 +
(
K−P0

P0

)
· 0

=
K

1

= K, which is the maximum sustainable population.

ii) Before the model can be applied, we need to fit the three parameters. From part (i), we
haveK = 50, 000. The initial population is given by P when t = 0:

P (0) =
K

1 +
(
K−P0

P0

)
e−r×0

=
K

1 +
(
K−P0

P0

)
e0

=
K

1 +
(
K−P0

P0

)
· 1

=
K

1 + K−P0

P0

=
KP0

P0 +K − P0

=
KP0

K

= P0, and so we know that P0 = 100.

Use thefinal informationprovided todetermineparameter r. Let tbe the time indays from
the start, then we have P (7) = 32000. Before substituting this in, transpose to obtain a
general formula for r:

P =
K

1 +
(
K−P0

P0

)
e−rt

Removing the fraction:

P

(
1 +

(
K − P0

P0

)
e−rt

)
= K

∴

(
K − P0

P0

)
e−rt =

K

P
− 1
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Multiply both sides by P0 and divide byK − P0 to isolate the exponential:

e−rt =

(
P0

K − P0

)(
K

P
− 1

)
Taking logs:

−rt = ln

(
P0

K − P0

(
K

P
− 1

))
(5)

And so:

r = −1

t
ln

(
P0

K − P0

(
K

P
− 1

))
Then substituting inK = 50000, P0 = 100, P = 32000 and t = 7:

r = −1

7
ln

(
100

50000− 100

(
50000

32000
− 1

))

= −1

7
ln

(
1

499

(
25

16
− 1

))

= −1

7
ln

(
9

16× 499

)
= −1

7
ln

(
9

7984

)

= 0.9697100 . . .

As expected, this is a positive value. We will need to keep r to a high precision.

From equation 5 above, we can then easily obtain a formula for t:

t = −1

r
ln

(
P0

K − P0

(
K

P
− 1

))
To find when the population exceeds 40,000, evaluate this formula with P = 40000,
K = 50000, P0 = 100, and r = −0.9697100:

67



t = − 1

0.96971
ln

(
100

49900

(
50000

40000
− 1

))

= − 1

0.96971
ln

(
1

499

(
5

4
− 1

))

= − 1

0.96971
ln

(
1

4× 499

)
Hence:

t = − 1

0.96971
ln

(
1

1996

)

= 7.83626 . . .

Thus 7.84 days from the starting point. So in fact, due to the behaviour of exponential
growth, the bacterial population will exceed 40,000 before the end of the next (eighth) day.

Plotting the logistic function in EXCEL, we can confirm our result directly from the
graph or from the calculated values:
Notice the exponential-like initial growth, before the population saturates at the carrying

capacityK.
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7.4 Example 3

Indicial equations such as the following are used in the solutions to certain kinds of differ-
ential equation problems:

2x+1 + 23−x = 17

By making a substitution y = 2x, determine all the values of x that satisfy this equation.

Solution:

Before implementing the substitution, we need to see how 2x appears in the equation
using rules of indices:

2x+1 + 23−x = 2x · 21 + 23 · 2−x

Hence:

2
(
2x
)

+
8

2x
= 17

Substituting in y = 2x:

2y +
8

y
= 17

This gives a simpler equation which we solve for y. Multiply all terms by y to remove the
fraction:

2y2 + 8 = 17y

∴ 2y2 − 17y + 8 = 0

This is then a quadratic equation in y, which can be solved by the quadratic formula or
factorised to:

(2y − 1)(y − 8) = 0

Hence the two solutions for y are y =
1

2
and y = 8.
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In terms of the original variable x, this means we have 2x = 8 and 2x =
1

2
. Hence,

for one solution:

ln
(
2x
)

= ln
(
8
)

Which using the rules of logarithms, indicates:

x ln
(
2
)

= ln
(
8
)

and so

x =
ln
(
8
)

ln
(
2
) =

ln
(
23
)

ln
(
2
) =

3 ln
(
2
)

ln
(
2
) = 3

Similarly, for the other solution:

ln
(
2x
)

= ln

(
1

2

)
= ln

(
2−1
)

=⇒ x = −1
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8 Triangle geometry and introduction to Trigonom-

etry

8.1 Learning Outcomes

• Introducing trigonometric functions and radian measure.

• Calculate lengths and angles using right-angled triangle rules.

• Rules for calculating lengths and angles in more general triangles.

• General form of trigonometric functions.

Trigonometric functions are frequently encountered when solving engineering problems,
e.g.

• Solutions of differential equations (mechanics, circuit analysis, control theory etc)

• Diffraction

• Surveying

• Navigation

• Optics and acoustics
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8.2 Radians

You will already be familiar with the degree as a measure of angle, where one full rotation
is equivalent to an angle of 360o.

Radians are an alternative unit for measuring angular rotation.

Radians are often simpler to work with as they lead to helpful approximate formulae,
and they are more commonly used throughout mathematics except when discussing an-
gles of triangles or other shapes.

The radian is defined as the angle between two radii that create a circular arc with a
length equal to one radius:

Since the circumference of a circle has a length of 2π radii, there must be 2π radians in a
full rotation.

Therefore:

Radians - degrees exchange rate:

2π rad = 360o

and also

1 rad = 57.3o to 1 d.p.
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Radians Degrees

0 0

π

2
90

π 180

3π

2
270

2π 360

1 57.3
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8.3 The basic Trigonometric functions

Trigonometric functions take an angle (usually measured in radians) as their input.

They are periodic, meaning that they repeat a pattern indefinitely.

There are three main functions of this kind, and we need to be familiar with their ap-
pearance:

• y = sin(t)

• y = cos(t)

• y = tan(t)

Sketching Sinusoids:
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Sketching the sine function:

sin(t) = 0 when t = 0. It varies between -1 and 1 and takes 2π rad (or 360o) to com-
plete one full cycle.

Sketching the cosine function:

cos(t) = 1 when t = 0. It varies between -1 and 1 and takes 2π rad (or 360o) to com-
plete one full cycle. It is identical to sine, but shifted left by π/2 radians.
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Sketching the tangent function:

tan(t) = 0 when t = 0. It possesses asymptotes at t = ±π
2

rad (or ±90o) and takes
π rad (or 180o) to complete one full cycle.
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8.4 Trigonometric Ratios

You may have encountered the trigonometric rules of a right-angled triangle:

Right-angled triangle trigonometric rules:

sin(θ) =
Opposite

Hypotenuse

cos(θ) =
Adjacent

Hypotenuse

tan(θ) =
Opposite

Adjacent

We can use these ratios to find unknown angles or side lengths.
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8.4.1 Example 1:

CalculateB in each of the following right-angled triangles:

a)

b)

c)

8.4.2 Solutions:

Example 1(a) - Solution

As the two sides of interest are the opposite and the adjacent, we can use the tangent ratio:

tan(42◦) =
Opp

Adj
=
B

32
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Transposing:

B = 32 tan(42◦) = 28.81cm (2 d.p.)

Example 1(b) - Solution

As the two sides of interest are the opposite and the hypotenuse, we can use the sine ratio:

sin(35◦) =
Opp

Hyp
=

12

B

Transposing:

B =
12

sin(35◦)
= 20.92cm (2 d.p.)

Example 1(c) - Solution

As the two sides of interest are the opposite and the hypotenuse, we can use the sine ratio:

sin(B◦) =
Opp

Hyp
=

34.7

53.1
= 0.65348 . . .

Using the inverse sine (or arcsin):

B = sin−1(0.65348) = 40.80◦ (2 d.p.)
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8.5 Pythagoras’ Theorem

We can also calculate the length of a side, if the other two sides are known, by using the
Pythagorean theorem:

Pythagoras’ Theorem:

a2 + b2 = c2

where c is the length of the hypotenuse.
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8.6 Trigonometric Ratios: Non-right-angled Triangles

Often the unknown angle or side of a triangle is from a non-right angled triangle:

There are two rules that can be used depending on what information we have and what
requires calculation.

8.6.1 The Sine Rule

Sine rule:

a

sin(A)
=

b

sin(B)
=

c

sin(C)
(6)

Or, equivalently

sin(A)

a
=

sin(B)

b
=

sin(C)

c
(7)

These are equivalent, but it is easier to use equation (6) if a side is the unknown and equa-
tion (7) if an angle is the unknown.

Note: in order to use the Sine Rule, a complete pair must be known, i.e. a and A (a
side and the angle facing it)
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8.6.2 Example 2:

Find a, c andC.

First, calculateC by the fact that angles in a triangle sum to 180o

∴ C = 180− 60− 45 = 75o

We have a complete pair (4 and 60o), so we can use the Sine rule.

Let’s use it to calculate a, as we also have the angle opposing it.
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a

sin(A)
=

b

sin(B)

a

sin(45)
=

4

sin(60)

a = sin(45)× 4

sin(60)

a = 3.27 to 2 d.p.

Now for c:

b

sin(B)
=

c

sin(C)

4

sin(60)
=

c

sin(75)

c = sin(75)× 4

sin(60)

c = 4.46 to 2 d.p.
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8.6.3 The Cosine Rule

Cosine rule:

a2 = b2 + c2 − 2bc cos(A) (8)

Or

cos(A) =
b2 + c2 − a2

2bc
(9)

Equation (8) would be used to calculate a side and equation (9) would be used to calculate
an angle.

Note: we use the Cosine Rule when we know either:

• all three sides a, b, c or

• two sides b, c and the angle A inbetween them.
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8.6.4 Example 3

Determine a:

Here, we don’t have a complete pair so we cannot use the Sine rule. However, we do know
two sides and the angle (80◦) inbetween, so we can use the Cosine Rule.

a2 = b2 + c2 − 2bc cos(A)

a2 = 10.32 + 15.92 − 2× 10.3× 15.9× cos(80)

a2 = 302.0233

a = 17.38 to 2 d.p.
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8.7 General form

It is common in engineering to encounter quantities that vary in a sinusoidal (sine-like)
fashion over time t. If y was such a quantity, we could say that:

General wave equation/sinusoidal function:

y = A sin(ωt+ φ) +B

whereA is the amplitude,B is the mean value (shift along the y-axis), ω is the angular
frequency and φ is the phase shift.

What do these mean?

• Amplitude is the maximum displacement of the wave from equilibrium. As y =
sin(x) + 3 varies between 2 and 4, the amplitude is exactly 1.

• B is how much the wave is shifted up by. You can find it by locating the vertical
mean value. As y = sin(x) + 3 varies between 2 and 4, the vertical shift is 3.

• The phase shift is how much the graph is shifted to the left by. y = sin(x + 0.1)
crosses the x-axis at x = −0.1, so the phase shift is 0.1 and the entire curve is shifted
0.1 to the left.

The angular frequency is the number of times the wave repeats in a distance of 2π along
the horizontal axis. If the period (wavelength) is T the angular frequency is given by:

ω =
2π

T

The frequency is the number of complete wavelengths in a unit of 1 along the horizontal
axis:

f =
1

T

Ifthehorizontalaxis istime(seconds), thenthefrequencyf unitsareHertz(cycles/second).

Combining these formulae:
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Frequency and period formulae:

T =
2π

ω
T =

1

f
ω = 2πf

The phase shift φ moves the graph horizontally. In particular, it moves it right by an
amount−φ/ω

Of course, since the cosine function is also sinusoidal, we can write a general wave equation
in the form:

y = A cos(ωt+ φ) +B,

whereA,B, ω and φ all have the same meaning.
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9 Trigonometric functions and equations

9.1 Learning Outcomes

• Plot general trigonometric functions using EXCEL.

• Identify the formula of a general trigonometric function from a plot.

• Solve equations involving trigonometric functions.

9.2 Plotting with EXCEL

We can use EXCEL to easily plot a general trig. function with any values of the parameters
A, ω, φ,B:

(a) Formula

(b) Plot
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9.3 Determining the equation of a graph

Engineers may encounter sampled data from a periodic signal such as a current or au-
dio signal, and wish to determine the sinusoidal function that matches it. In practice,
this means determining the best values of the parameters A, ω, φ,B in the general form
y(t) = A sin(ωt+ φ) +B. To do this:

1. Find the maximum and minimum values of the wave. The amplitude A is half the
distance between these, and the vertical shiftB is their average.

2. Measure the period T , and determine angular frequency from ω = 2π/T .

3. Substitute in the values of a point on the plot and solve for φ.

Example:

Determine the equation of the curve:

Note: deal withA first, then ω, and finally φ .
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The total vertical displacement between two peaks is:

3− (−3) = 6

so the amplitude is half this: A = 3

As the wave oscillates between -3 and 3, the mean height is zero and so the vertical shift is
B = 0.

The horizontal distance between two neighbouring peaks is:

13− 2.6 = 10.4

So the period is T = 10.4, and the angular frequency is:

ω =
2π

T
=

2π

10.4
= 0.60 (2 d.p.)
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The graph goes through the point (0, 0), so substituting this in to the equation so far to
find φ:

y = 3 sin(0.60t+ φ)

we obtain:

0 = 3 sin(0.60× 0 + φ)

0 = sin(φ)

φ = sin−1(0)

φ = 0
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So the equation of this sinusoidal wave is:

y = 3 sin(0.60t)

9.4 Solving Trigonometric Equations of the form A sin(ωx +

φ) +B = C

We have seen how to solve equations involving many kinds of functions (quadratics, loga-
rithms, etc.). How do we solve equations involving trigonometric functions?

Due to the periodicity of sine and cosine, an equation of the type sin(x) = c will ei-
ther have no solutions (as sine only takes a certain range of values) or infinitely-many
solutions, unless we specify a restricted range of x that we are interested in.

For a general trigonometric equation A sin(ωx + φ) + B = C, we follow a procedure
to locate all solutions for xwithin a specified range:

1. Define a new variable u = ωx + φ to simplify the the trig. function to sin(u) = c,
where c = (C −B)/A.

2. Calculate thenewrange intermsofu, bysubstitutingthe limitsofx into this formula.

3. Determine the set of solutions for u:

• Use the inverse trigonometric function on your calculator to obtain the prin-
cipal value:

u0 = sin−1(c)

This is the first solution, and the value closest to the y-axis.

• For sine and cosine, use the symmetry of the graph to locate the other solution
that occurs within the first cycle. This often takes the form u1 = π − u0 for
sine, and u1 = −u0 for cosine.

• To find all of the other solutions for u, then:

– For sine and cosine, add and subtract integer multiples of 2π to both u0
and u1 until we are outside of the stated range.

– For tangent, add and subtract multiplies of π to u0.

– Usehighprecisionwhencalculatingeachsolution, aserrorsmaycompound
as we use u0 to determine u1 and then use that determine subsequent
solutions.
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4. Convert solutions for u back to the corresponding solutions for x using:

x =
u− φ
ω

5. Verify the final solutions by substituting back intoA sin(ωx+φ)+B and evaluating.

Example:

Solve

sin(3x+ 0.2) = 0.5

for−π ≤ x ≤ π.

Solution:

Let u = 3x+ 0.2, then the range is−3π + 0.2 ≤ u ≤ 3π + 0.2, or:

−9.2248 ≤ u ≤ 9.6248

Now the problem has been converted to:

“Solve sin(u) = 0.5 for−9.2248 ≤ u ≤ 9.6248.”

Obtain the principal value:

u0 = sin−1(0.5) =
π

6
= 0.5236
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From the symmetry of the graph, the other solution in the first period is:

u1 = π − 0.5236 = 2.6180

Adding and subtracting multiples of 2π, we find six solutions foru in the acceptable range.
Then convert these back to solutions for x using:

x =
u− 0.2

3

u In Range? x =
u− 0.2

3

u0 = 0.5236 Yes (0.5236− 0.2)/3 = 0.1079

u0 + 2π = 0.5236 + 2π = 6.8058 Yes 2.2023

u0 + 4π = 0.5236 + 4π = 13.090 No -

u0 − 2π = 0.5236− 2π = −5.7596 Yes −1.9865

u0 − 2π = 0.5236− 4π = −12.043 No -

u1 = 2.6180 Yes 0.8060

u1 + 2π = 2.6180 + 2π = 8.9012 Yes 2.9004

u1 − 2π = 2.6180− 2π = −3.6652 Yes −1.2884

u1 − 4π = 2.6180− 4π = −9.9484 No -

So we have six valid solutions: x = −1.288, −1.987, 0.108, 0.806, 2.202, 2.900
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9.5 Sketching Sinusoidal functions

Sketch the sinusoids defined by

(1) y = 5 sin
(

0.5t+
π

2

)
and

(2) y = −0.2 cos(2t− π)

Note: deal withA first, then ω, and finally φ.

9.5.1 Examples: Sketching Sinusoids - Solution 1

Figure 1: y = sin(t)

Start by drawing the regular sine wave: y = sin(t)
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Figure 2: y = 5 sin(t)

The amplitude isA = 5, so rescale the y-axis and draw y = 5 sin(t)

Figure 3: y = sin(0.5t)

Figure 4: y = 5 sin

(
0.5t+ π

2

)
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The angular frequency is ω = 0.5, so compress the x-axis by a factor of 0.5 (or stretch by
2), so that the new period is:

T =
2π

ω
=

2π

0.5
= 4π

Finally, shift right by

−φ
ω

= −π/2
0.5

= −π

or left by π radians.

9.5.2 Examples: Sketching Sinusoids - Solution 2

Figure 5: y = cos(t)

Start by drawing the regular cosine wave: y = cos(t)
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Figure 6: y = −0.2 cos(t)

The amplitude isA = −0.2, so rescale the y-axis and draw y = −0.2 cos(t). The negative
amplitude means that the curve is flipped upside-down (reflected in the x-axis).

Figure 7: y = −0.2 cos(2t)
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Figure 8: y = −0.2 cos(2t− π)

The angular frequency is ω = 2, so compress the x-axis by a factor of 2, so that the new
period is:

T =
2π

ω
=

2π

2
= π

Finally, shift right by

−φ
ω

= −−π
2

=
π

2

radians.

9.6 Extra resources

The module Blackboard site has an additional video walkthrough for an example of each
of these two kinds of questions.

When you get stuck on the relevant tutorial questions, watch these after revisiting the
lecture material.
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10 Introduction to differentiation

10.1 Learning Outcomes

• State what is meant by the gradient of a curve at a point.

• Differentiate functions to obtain their derivatives.

10.2 Motivation

Differentiation allows us to calculate the gradient of a curve or, more specifically, a rate
of change of one variable with respect to another variable.

Examples of rates of change:

• velocity (rate of change of displacement with respect to time)

• acceleration (rate of change of velocity w.r.t. time)

• power (rate of low of energy w.r.t. time)

10.3 Gradients

We have already seen how to calculate the gradient (steepness of the slope) of linear lines:

Here the gradient is:

m =
∆y

∆x
=

7− (−2)

4− 1
=

9

3
= 3
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where ∆ is the change, or difference in, y or x.

Note that with linear lines the gradient is constant throughout, i.e. no dependence on
x.

10.3.1 Physical Example

Consider this piece-wise graph which illustrates the displacement S (m) of an object over
time t (s).

From the graph we can see that the object is moving in regionsA and C and is stationary
in regionB.

Calculating the gradient in regionA:

m =
∆S

∆t
=

8

4
= 2

Consider the units:

∆S

∆t
=

m

s

which is m/s. So the gradient of a displacement-time curve gives a velocity (rate of change
of displacement w.r.t. time). As the graph is a straight line, inA the object has a constant
velocity of 2 m/s.
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Calculating the gradient in regionB:

m =
∆S

∆t
=

0 m

3 s
= 0 m/s

This indicates that the object is travelling at 0 m/s, i.e. it is stationary.

Looking back at the graph: at 4 seconds the object is at the 8 metre mark and at 7
seconds the object is still at the 8 metre mark, so cannot be moving.

The physical example has provided us with two important results:

1) Consider the equation of the line in region A: it has form y = mx + c and specifi-
cally y = 2x (think of x and y rather than t and S). The gradient here was simply 2. If the
equation of the line was y = 5x, then the gradient would be 5, etc.

Therefore, if:

y = ax, then gradient: m =
∆y

∆x
=

difference in y

difference in x
=
dy

dx
= a

Similarly for region B the equation of the line is of the form y = mx + c and specifically
y = 8.

2) The gradient here was simply 0. If the equation of the line was y = 9, then the gradient
would also be 0, as it is a straight horizontal line and has no steepness.

Therefore, if:

y = a, then gradient: m =
∆y

∆x
=

difference in y

difference in x
=
dy

dx
= 0
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10.3.2 Gradients of linear or constant functions

y
dy

dx

a (any constant) 0

ax a

The functions in the right-hand column of this table are known as the derivatives of the
functions in the left-hand column.

We obtain the derivative of a function by differentiation.

10.4 Notation

dy

dx
represents the gradient/derivative of a curve y = f(x).

y′andf ′(x)arecommonalternativestothesymbol
dy

dx
. Theyallmeangradient/derivative/rate

of change, where f(x) is another way of writing that y is a function f of x.

ẏ is also another way to represent the derivative, but in the case specifically w.r.t. time,

i.e. ẏ =
dy

dt
.

If, instead of y = f(x), we have different function and variable names such as r = f(t)

then the derivative of r is written as
dr

dt
.
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10.5 Exercise

Determine the gradients of the following lines:

1) y = 6x
dy

dx
= 6

2) x = 9.7t
dx

dt
= 9.7

3) r =
3

5
θ

dr

dθ
=

3

5

4) y = −12 y′ = 0

5) P =
7

8
P ′ = 0
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10.6 Differentiation

Calculating the gradient of a curve is harder as the gradient varies along the curve, i.e. it
depends on x.

First, we would need a rigorous way of defining the gradient of a curve at a particular point:

The gradient of a curve at a point is equal to the gradient of the
tangent line at that point.

A tangent line is a straight line that only just touches the curve at exactly that particular
point. So we could draw such a line at the point we were interested in. . .

Then we would set up a triangle (as in linear cases) to calculate the gradient of the tangent.
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But how could we consistently draw perfect tangents to the curve at all infinitely-many
points?

10.6.1 Differentiation: Standard rules

See Formulae booklet!

For standard functions, formulae for the derivatives have been proven using a general
version of this process. We can use these rules (so we will never need to draw tangents!).
For constant a, n:

10.6.2 Example 1

Calculate an expression for the gradient of y = 7x3.

Looking in the left-hand-side of the table, we can see that this is in the form axn, where
a = 7 and n = 3. The corresponding right-hand column instructs us on how to differenti-
ate it:

If y = axn, then
dy

dx
= n× axn−1
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Therefore, in the case of y = 7x3

dy

dx
= 3× 7x3−1

= 21x2

10.6.3 Example 2

Calculate an expression for the gradient of y = 4x2.

Again, this is in the form axn, where a = 4 and n = 2. Therefore

dy

dx
= 2× 4x2−1

= 8x

Note that this is an expression for the gradient, which is dependent upon x. If we wanted
to calculate the gradient at a specific point, sayx = 5, then we simply substitute this value
into the gradient expression:

dy

dx

∣∣∣∣
x=5

= 8× 5 = 40

10.6.4 Exercise

Determine expressions for the gradients of the following curves:

1) y = 3x4

2) y = −7x9

3) x = 9t−2

4) y =
7

2
x3, and calculate the gradient at the point x = 4.

5) y =
2

φ5
, and calculate the gradient at the point φ = −2.4.

6) y = 4 sin(5x). This has the form a sin(nx). What are a and n?

Solutions:
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1)
dy

dx
=

d

dx

(
3x4
)

= 3× 4x4−1 = 12x3

2)
dy

dx
=

d

dx

(
− 7x9

)
= −7× 9x9−1 = −63x8

3)
dx

dt
=

d

dt

(
9t−2

)
= 9× (−2)t−2−1 = −18t−3

4)
dy

dx
=

d

dx

(
7
2
x3
)

= 7
2
× 3x3−1 =

21

2
x2

Hence, at x = 4, the gradient is:

dy

dx

∣∣∣∣
x=4

=
21

2
(4)2 = 168

5) First, the function must be rewritten in the form: y = 2φ−5

Then

dy

dφ
=

d

dφ

(
2φ−5

)
= 2× (−5)φ−5−1 = −10φ−6

At φ = −2.4, we have:

dy

dφ

∣∣∣∣
φ=−2.4

= −10(−2.4)−6 = −0.05

6) a = 4 and n = 5, then the derivative is:

dy

dx
=

d

dx

(
4 sin(5x)

)
= 4× 5 cos(5x) = 20 cos(5x)

10.6.5 Example 3

Calculate an expression for the gradient of:

y = 3x2 + 7x− 3 + 2e5x

When we have a sum of multiple terms, in order to differentiate this we simply differentiate
each term and sum their gradients in the same way (this property of differentiation is called
linearity).

dy

dx
=

d

dx

(
3x2
)

+
d

dx

(
7x
)
− d

dx

(
3
)

+
d

dx

(
2e5x

)
=

(
2× 3x2−1

)
+
(
7
)
−
(
0
)

+
(
5× 2e5x

)
= 6x+ 7 + 10e5x
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11 Differentiation - the chain rule

11.1 Learning Outcomes

• Recognise “functions of functions”.

• Apply the chain rule to differentiate these.

11.2 Motivation

It isnotpossible todifferentiateevery functionusingtherulescoveredearlier. Forexample,
if we wished to differentiate:

y = 7x3 sin(5x),

there is no formula in the table for the precise form axn sin(mx).

Similarly we can’t (yet) differentiate:

y =
8e−6x + 3x

cos(2x)
and y = 9(2x− 4)3,

We will be learning additional rules to cover cases like these.
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11.3 The Chain Rule

To differentiate a function of a function y = f(g(x)) (i.e. one function inside another
function), we must use the chain rule.

The Chain Rule:

If y = f(u) and u = g(x), then

dy

dx
=
dy

du
× du

dx

f is the “outer” function, and g is the “inner” function, which we designate as a new vari-
able u.

We would use the chain rule for functions that look like:

y = 5(3x− 8)4 where the inner function 3x− 8 lies

within the outer function 5(X)4

y = −2 cos(4x+ 7) where the function 4x+ 7 lies within

the outer function−2 cos(X)

y = 7e5x
2

where the function 5x2 lies within the function 7eX
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11.3.1 Example 1

To determine the derivative of

y = 3(5x− 7)4

we must first recognise that we have one function 5x− 7 inside another function 3X4.

We make a substitution u, usually for the “thing” inside the brackets. Thus, if we let
u = 5x− 7, we can re-write the original equation (the outer function) as:

y = 3u4

By introducing u, we have separated the original “‘function of a function” into two “sim-
ple” functions: y = 3u4 and u = 5x− 7

The chain rule formula requires y to be differentiated w.r.t. u and u to be differentiated
w.r.t. x:

u = 5x− 7 =⇒ du

dx
= 5

y = 3u4 =⇒ dy

du
= 12u3

Substituting these into the rule:

dy

dx
=

dy

du
× du

dx

= (12u3)× (5)

= 60u3

However, this is not the final answer, as we must now substitute u = 5x− 7 back into the
answer:

dy

dx
= 60u3 = 60(5x− 7)3

Always state the final answer in terms of the original variables (in this case x) and not u,
which we introduced during the process of solving the problem.
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11.3.2 Example 2

Determine the derivative of

y = −5 cos(2x+ 3)

First, substitute the inner function: u = 2x+ 3.

Second, re-write the original equation: y = −5 cos(u).

Now calculate the derivatives of u = g(x) and y = f(u):

du

dx
= 2 and

dy

du
= 5 sin(u)

Now, substitute both results into the chain rule formula:

dy

dx
=

dy

du
× du

dx

= (5 sinu)× (2)

= 10 sin(u)

Finally substitute u = 2x+ 3 back into the answer:

dy

dx
= 10 sin(2x+ 3)
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11.3.3 Example 3

Determine the derivative of

y = 3e(5x
2−3x+1)

First, substitute the inner function u = 5x2 − 3x+ 1

Then re-write the original equation (the outer function): y = 3eu

Now calculate the derivatives of u (= g(x)) and y (= f(u)):

du

dx
= 10x− 3 and

dy

du
= 3eu

Substitute both results into the chain rule formula:

dy

dx
=

dy

du
× du

dx

= (3eu)× (10x− 3)

= 3(10x− 3)eu

Finally substitute u = 5x2 − 3x+ 1 back in to obtain the answer in terms of x only:

dy

dx
= 3(10x− 3)e(5x

2−3x+1)
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12 Differentiation - the product and quotient rules

12.1 Learning Outcomes

• Apply the product and quotient rules to differentiate more complicated functions.

12.2 The Product Rule

The function

y = 9x2e7x

is comprised of one function 9x2 multiplied by another function e7x. This is more compli-
cated than any of our standard functions, but it also isn’t a “function of a function” (there
is no obvious inner part), so the chain rule cannot help either.

In order to differentiate this, we need to use the product rule.

The product rule tells us how to differentiate a function that is the product (multiple)
of two functions.

Product Rule:

If y = u · ν, then

dy

dx
= u

dν

dx
+ ν

du

dx

This formula is made up of two functions, u and ν. Note that these are two elements of the
overall function y that we want to differentiate. To determine dν/dxwe must differentiate
ν w.r.t. x and similarly to determine du/dxwe must differentiate uw.r.t. x.

Let us now return to the original example.

In this example:

u = 9x2 ∴
du

dx
= 18x
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ν = e7x ∴
dν

dx
= 7e7x

Substituting these values into the product rule gives:

dy

dx
= u

dν

dx
+ ν

du

dx

= (9x2)× (7e7x) + (e7x)× (18x)

= 63x2e7x + 18xe7x

12.2.1 Example 2

Differentiate:

y = −5x4 sin(3x)

Let u = −5x4 ∴
du

dx
= −20x3

and ν = sin(3x) ∴
dν

dx
= 3 cos(3x)

Substituting these values into the product rule:

dy

dx
= u

dν

dx
+ ν

du

dx
= (−5x4)× (3 cos(3x)) + (sin(3x))× (−20x3)

This should be simplified as much as possible:

dy

dx
= (−5x4)× (3 cos(3x)) + (sin(3x))× (−20x3)

= −15x4 cos(3x)− 20x3 sin(3x)

This could be further simplified by factorisation:

dy

dx
= −5x3(3x cos(3x) + 4 sin(3x))
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12.3 The Quotient Rule

The equation

y =
9 cos(3x)

5x4

is comprised of one function 9 cos(3x) divided by another function 5x4. Again, none of
our existing rules are able to handle this1 so in order to differentiate this function we need
to use the quotient rule.

The quotient rule tells us how to differentiate a function that is a fraction (quotient)
of two functions.

Quotient Rule:

If y =
u

ν
, then

dy

dx
=
ν

du

dx
− udν

dx
ν2

This is very similar to the product rule method, but we substitute the four terms into a
different equation. Note that it is essential thatu is the numerator, andν the denominator.

Let us now return to the original example.

In this example:

u = 9 cos(3x) ∴
du

dx
= −27 sin(3x)

ν = 5x4 ∴
dν

dx
= 20x3

Substituting these values into the quotient rule gives:

dy

dx
=
ν

du

dx
− udν

dx
ν2

1Can you think of a way to re-write this function so that we could use the product rule?
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Thus,

dy

dx
=

(5x4)× (−27 sin(3x))− (9 cos(3x))× (20x3)

(5x4)2

=
−135x4 sin(3x)− 180x3 cos(3x)

25x8

=
−45x3

25x8
(
3x sin(3x) + 4 cos(3x)

)
=
−9

5x5
(
3x sin(3x) + 4 cos(3x)

)
12.3.1 Example 4

Differentiate:

y =
9x3

2 sin(5x)

Let u = 9x3 ∴
du

dx
= 27x2

and ν = 2 sin(5x) ∴
dν

dx
= 10 cos(5x)

Substituting these values into the quotient rule gives:

dy

dx
=
ν

du

dx
− udν

dx
ν2

=
(2 sin(5x))× (27x2)− (9x3)× (10 cos(5x))

(2 sin(5x))2

=
54x2 sin(5x)− 90x3 cos(5x)

4 sin2(5x)
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13 Differentiation - applications

13.1 Learning Outcomes

• Determine higher order derivatives.

• Locate stationary points and classify their nature.

• Use the principles of differential calculus to solve engineering problems.

13.2 Rates of change

We have seen that differentiation allows us to calculate the gradient of a curve at any point,
indicating how quickly the variable on the y-axis is changing as a result of change in the
variable on the x-axis. Therefore, as mentioned previously, gradients represent rates of
change.

Physical examples:

x-axis y-axis Gradient

Time: t

Displacement: S Velocity: ν =
dS

dt

Velocity: ν Acceleration: a =
dν

dt

Energy: E Power: P =
dE

dt

Charge: q Current: I =
dq

dt

Momentum: p Force: F =
dp

dt

Angular displacement: θ Angular velocity: ω =
dθ

dt
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13.2.1 Example 1

A projectile is thrown directly upwards such that its vertical displacement S m changes
over time t s in accordance with the formula:

S = 2.4t− 4.9t2

Determineaformula for itsvelocityand,hence, thevelocityof theprojectileafter4seconds.

Solution:

First, we differentiate to obtain a formula for the velocity ν at any time t (do not substitute
in t = 4 until this is done! )

ν(t) =
dS

dt

=
d

dt

(
2.4t− 4.9t2

)
= 2.4− 9.8t

Then evaluate this at t = 4 to determine the velocity at that time:

ν(t = 4) = 2.4− 9.8× 4 = −36.8 m/s
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13.2.2 Example 2

When charging up, the charge q (C) held by a capacitor varies with time t (s) such that

q = 10−7
(
1− e−50t

)
Determine the current flow in the circuit at t = 8 s.

Solution:

Current is the rate of change of charge, so differentiate w.r.t. time:

I(t) =
dq

dt

=
d

dt

(
10−7

(
1− e−50t

) )
= 10−7 × 50e−50t

= 5× 10−6e−50t

Evaluate at t = 8:

I(t = 8) = 5× 10−6e−50×8 = 9.58× 10−180 ≈ 0
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13.3 Stationary Points

Consider the curve:

Points A, B and C are all points on the curve where the gradient is zero:

Stationary points:

dy

dx
= 0

• A is a minimum

• B is a point of inflection

• C is a maximum

Optimisation:

• So extreme values (maxima and minima) occur at stationary points (or at the
edge of the range under consideration).

• Finding values ofx that provide a maximum or a minimum value ofymay be relevant
to an optimisation problems, e.g. what number of check-out staff will maximise
profits?

• We can find these by differentiating the function and solving for “where is the
derivative equal to zero?”
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13.3.1 Example 3

The approximate annual costC (in £100’s) of carrying out maintenance on a machine part
at a frequency of f (per year) is given by:

C = 5e−0.5f + 0.6f

Determine the maintenance frequency f that will incur the lowest overall cost, i.e. the
optimal maintenance frequency.

Solution:

As the cost C is the quantity to optimise, we must obtain a formula for its derivative
w.r.t. f :

dC

df
=

d

df

(
5e−0.5f + 0.6f

)
= −2.5e−0.5f + 0.6

Now set this equal to zero, and solve for f :

dC

df
= 0

Thus,

∴ −2.5e−0.5f + 0.6 = 0

∴ e−0.5f =
0.6

2.5
=

6

25
= 0.24

∴ −0.5f = ln(0.24)

∴ f =
1

−0.5
ln(0.24) = −2 ln(0.24) = 2.85 to (2 d.p.)

So 2.85 times per year, which incurs a cost of

C = 5e−0.5×2.85 + 0.6× 2.85 = 2.91 =⇒ £291

This is the only value of f that gives an extreme value ofC, but how can we be sure that it
is a minimum specifically?
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13.4 Higher Order Derivatives

We can differentiate y = 2x3 once to get the first derivative:

dy

dx
= 6x2

We can differentiate again to obtain the second derivative:

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
6x2
)

= 12x

We could also differentiate for a third and fourth time, etc.:

d3y

dx3
= 12 and

d4y

dx4
= 0

For an engineering application, accelerationa(t) is the 2nd order derivative of displacement
S(t), since:

ν =
dS

dt
and a =

dν

dt

hence,

a =
d

dt
(ν) =

d

dt

(
dS

dt

)
=

d2S

dt2

2nd order derivatives are used to classify stationary points.
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Second derivative test:

If y = f(x) has a stationary point at x = a then:

• if
d2y

dx2
< 0 at x = a then it is a maximum point at a.

• if
d2y

dx2
> 0 at x = a then it is a minimum point at a.

• if
d2y

dx2
= 0 at x = a then the nature is unknown and

needs further investigation.

13.5 Example 4

For a limited speed range, the torque-speed relationship for an AC induction motor is
approximated by the formula:

τ = −0.0016ω3 + 0.17ω2 − 3.4ω + 250

where τ is the torque generated as a percentage of full-load torque andω is (angular) speed
as a percentage of synchronous (angular) speed.

Find the maximum and minimum torque points and check the result with a plot of τ
against ω.

Solution:

To obtain extreme values of τ , we first differentiate it w.r.t. ω:

dτ

dω
=

d

dω

(
− 0.0016ω3 + 0.17ω2 − 3.4ω + 250

)
= −0.0048ω2 + 0.34ω − 3.4
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Set dτ
dω

= 0 and solve for ω:

−0.0048ω2 + 0.34ω − 3.4 = 0

∴ −48ω2 + 3400ω − 34000 = 0 simplifying. . .

∴ 6ω2 − 425ω + 4250 = 0

Now use the quadratic formula with a = 6, b = −425, c = 4250:

ω =
−(−425)±

√
(−425)2 − 4× 6× 4250

2× 6

=
425±

√
78625

12

=
425± 280.4015

12

= 12.0499 or 58.7835

So these values of ω are the “locations” of the extreme values of τ

Substitute these values into the original function to determine the extreme values of τ
that occur at these points:

τ(ω = 12.0499) = −0.0016(12.0499)3 + 0.17(12.0499)2

−3.4(12.0499) + 250

= 230.9149 . . .

and

τ(ω = 58.7835) = −0.0016(58.7835)3 + 0.17(58.7835)2

−3.4(58.7835) + 250

= 312.5869 . . .

125



To confirm the classifications, find the second derivative:

d2τ

dω2
=

d

dω

(
dτ

dω

)

=
d

dω

(
− 0.0048ω2 + 0.34ω − 3.4

)
= −0.0096ω + 0.34

And evaluate this at each stationary point.

d2τ

dω2

∣∣∣∣
ω=12.0499

= −0.0096× 12.0499 + 0.34 = +0.2243 > 0

So at ω = 12.05 there is a minimum of τ = 230.91.

d2τ

dω2

∣∣∣∣
ω=58.7835

= −0.0096× 58.7835 + 0.34 = −0.2243 < 0

Confirming that at ω = 58.78 there is a maximum of τ = 312.59.

Plotting this function in Excel or MATLAB to check our results:
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13.6 Applications of calculus to motion

In this part of the course we have been learning about how the displacement s(t), velocity
v(t) and acceleration a(t) at time t of a body are related to each other through calculus
(i.e. through differentiation and integration). In particular, the key theory to remember
is:

a(t) =
dv

dt
and v(t) =

ds

dt
, so also a(t) =

d2s

dt2
(10)

in (other) words, velocity is the rate of change of displacement, and acceleration is the rate
of change of velocity.

Going the other way using integrals instead:

s(t) =

∫
v(t) dt and v(t) =

∫
a(t) dt

What about “speed is distance over time”?

“But wait!”, you may say, “isn’t speed just distance divided by time, . . . and isn’t acceler-
ation just the change in velocity divided by the time passed?”

You may indeed be familiar with these ideas, expressed mathematically as:

v(t) =
∆s

∆t
and a(t) =

∆v

∆t
(11)

where ∆ (pronounced “delta”) means “the change” of that particular quantity. Look at
these formulae in 11 again. Then look at the new rules in 10, and back again. Do you notice
anything? They actually look pretty similar except that instead of the ∆ we have d in the
newcalculusrules! That’sbecausetherules in11are just special casesof thesemoregeneral
rules that we are now learning. If velocity is constant then the rule v = ∆s/∆t is actually
the same as v = ds/dt, while if velocity is not constant then it is only an approximation
of the true relationship. Similarly, if acceleration is constant then a = ∆v/∆t is actually
equivalent to a = dv/dt, while if acceleration is not constant it is only an approximation.
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But what about the equations of motion?

These old rules in 11 are themselves just informal ways of stating some of the equations of
motion that you may also have encountered. These include rules such as:

v = u+ at

s = ut+
1

2
at2

v2 = u2 + 2as

and a few others, where u is the initial speed, v is the final speed, a is the acceleration and
s is the displacement during this time t.

These equations are still true, they haven’t somehow become false, but once again what
we need to recognise is that the equations of motion only describe situations where
acceleration is constant. They do not apply to any other situation where the accel-
eration is not constant. That’s why we learn this new application of differentiation and
integration: these new rules in 10 supersede any previous ones you may have learned which
were really just special cases of this more general set of rules!

To see this, let’s consider that first equation of motion:

v = u+ at

Here, the initial speed u is a constant, as is the acceleration a. So an example might be
v = 15 + 3t if u = 15 and a = 3. In other words, this is just a linear relationship (a
straight line) between the final speed and the amount of time passed. Every second the
speed increases at a constant rate of 3m/s2. Now if we different this equation with respect
to time, we get:

dv

dt
=

d

dt

(
u+ at

)
= a

so even in the special case where these equations of motion apply, the more general truth
still holds that acceleration is the derivative w.r.t time of velocity.
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Conclusion

So what do you need to take away from this?

• It is always true that:

a(t) =
dv

dt
and v(t) =

ds

dt
, so also a(t) =

d2s

dt2

and

s(t) =

∫
v(t) dt and v(t) =

∫
a(t) dt

In general, you should use these relationships when trying to solve problems about
motion on this module.

• You can only use:

v(t) =
∆s

∆t

when you know for a fact that velocity is constant. Otherwise this relationship is
not true!

• You can only use:

a(t) =
∆v

∆t

and the equations of motion when you know for a fact that acceleration (or deceler-
ation) is constant. Otherwise this relationship is not true!
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14 Introduction to integration

14.1 Learning Outcomes

• Understand what integration is, in terms of (i) the inverse of differentiation, and (ii)
finding the area under a curve.

• Learn the standard rules for integration, using the tables in the formula booklet.

• Understand the difference between definite and indefinite integration.

14.2 Motivation

Integration is used to solve many problems, such as determining how much of a quantity
has accumulated over time:

• Integrate power over time to determine total energy.

• Integrate force over distance to determine energy spent (valuable in potential energy
problems).

• Integrate flow rate over time to determine accumulation of the flowing quantity e.g.
mass, volume, charge etc.

Integration concerns calculating the area underneath a curve.
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14.2.1 Example

Consider again this piece-wise graph which illustrates the velocity v (m/s) of an object
over time t (s).

Considering region B we can determine that the object is travelling at 6 m/s between
t = 3 s and t = 8 s.

So in this region the object has travelled 6 m after 1 second, 12 m after 2 seconds and
30 m after 5 seconds.

We could also calculate the total distance travelled in region B by calculating the area
underneath the curve:

Area = Width× Height

= 5 (s)× 6 (ms−1)

= 30 m

14.2.2 Integration as the opposite of differentiation

We could also calculate the displacement in regions A and C, using the formulae for the
area of a trapezium.

However, calculating the area underneath a curve is non-trivial.
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So, just as we calculated gradients by referring to our table of derivatives, we will now
look at integrating functions by referring to a table of integrals.

Integration is the inverse of differentiation, just as division is the inverse of multi-
plication and subtraction is the inverse of addition. This means that many of the rules will
be familiar, but reversed!

132



14.3 Standard rules of integration:

Find this in the formula booklet!
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14.4 Definite Integration

Integration can be either definite or indefinite.

Definite integration allows us to calculate the exact area enclosed between:

• a curve,

• two vertical lines and

• the x-axis.

AreaA is given by the definite integral of function f(x) between the limitsx = aandx = b.

14.4.1 Definite Integration Example 1

Using formal integration, let’s confirm the answer from the earlier example. In region B,
between x = 3 and x = 8, the function was a constant: y = 6

disp =

∫ 8

3

6 dx

=
[
6x
]8
3

Now sub. in upper and lower limits:

= (6× 8)− (6× 3) (upper) - (lower)

= 48− 18

= 30m as expected.
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14.4.2 Definite Integration Example 2

Determine the area under the curve y = 2 sin x between the limits of x = 0 and x = π.
Note that we will always use radians for trigonometric functions in this context unless
stated otherwise.

Solution:

Area =

∫ π

0

2 sinx dx

=

[
− 2 cosx

]π
0

=
(
− 2 cos(π)

)
−
(
− 2 cos(0)

)
(use radians!)

= 2 + 2

= 4 units squared
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14.4.3 Physical Example 3

Determine the displacement, S m, of an object between the times t = 2 s and t = 5 s given
that the expression for its velocity is:

v = 3t2 − 6t+ 7

Solution:

S =

∫ 5

2

v dt

=

∫ 5

2

3t2 − 6t+ 7 dt

=

[
3t3

3
− 6t2

2
+ 7t

]5
2

=
[
t3 − 3t2 + 7t

]5
2

= (53 − 3× 52 + 7× 5)− (23 − 3× 22 + 7× 2)

= 85− 10 = 75 m
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14.5 Indefinite Integration

The alternative is indefinite integration, where we do not know the upper and lower
limits. The solutions will always contain the constant of integration, C, accounting for
this uncertainty.

Example 4: Integrate the function 5x2 + 7x− 2 with respect to x:

∫
5x2 + 7x− 2 dx =

5x3

3
+

7x2

2
− 2x+ C

Note:

• only one +C is required at the end of the answer, as if there were multiple unknown
constants they could be merged.

• +C could appear in definite integration, but it would disappear when subtracting
the lower limit from the upper.

14.5.1 Indefinite Integration Example 5

Integrate:

y =

∫
4x3 − 7e3x dx

Solution:

y =

∫
4x3 − 7e3x dx

=
4x4

4
− 7e3x

3
+ C

= x4 − 7

3
e3x + C

We can only determine the constant of integration if we are given additional information
about the curve or the physical problem, such as a coordinate, or an initial condition.
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For example, if we were also told that y = 2 when x = 0, then substitute this in and
solve forC:

y = x4 − 7e3x

3
+ C

2 = 04 − 7e3×0

3
+ C

2 = −7

3
+ C

∴ C = 2 +
7

3
=

13

3

Therefore, the particular solution is: y = x4 − 7e3x

3
+ 13

3

How does a condition help us find C? Remember that integration is the inverse of dif-
ferentiation, so indefinite integrate shows us the set of curves whose gradient all obey the
same function. Thus, they are all parallel and vertically-shifted depending on the value of
C.

A co-ordinate assigns a value toC, selecting a particular curve.
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14.6 Exercises

Integrate the following:

1)
∫

6 sin(3x) + 5x−2 dx

2)

∫
7x2

3
+ e−2x +

5

x
dx

3)

∫
3

1

2

x3
+ 2x+ 8 dx

4) Determine the particular solution of y =
∫

3− 7x+ 12x2 dx,
given that when x = −2, y = 0.5.

Solutions:

1) Indefinite integration:∫
6 sin(3x) + 5x−2 dx = −6

3
cos(3x) +

5

−1
x−1 + C

= −2 cos(3x)− 5

x
+ C

2) Indefinite integration:∫
7x2

3
+ e−2x +

5

x
dx =

7

9
x3 +

1

−2
e−2x + 5 ln(x) + C

=
7

9
x3 − 1

2
e−2x + 5 ln(x) + C
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3) Definite integration:∫ 3

1

2

x3
+ 2x+ 8 dx =

∫ 3

1

2x−3 + 2x+ 8 dx

=

[
2

−2
x−2 +

2

2
x2 + 8x

]3
1

=
[
− x−2 + x2 + 8x

]3
1

=

(
−1

9
+ 9 + 24

)
−
(
−1

1
+ 1 + 8

)

= 32
8

9
− 8 = 24

8

9

4) First, the indefinite integral:

y =

∫
3− 7x+ 2x2 dx

= 3x− 7

2
x2 +

2

3
x3 + C

Then substitute in the condition x = −2 and y = 0.5:

0.5 = 3(−2)− 7

2
(−2)2 +

2

3
(−2)3 + C
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15 Integration - by substitution

15.1 Learning Outcomes

• Solve more challenging integrals using the technique integration by substitu-
tion.

15.2 Integration Using Substitution

Integrations of the form:∫
(5− x)3 dx

∫
(6x+ 7)(3x2 + 7x− 8)5 dx

∫
8x

4x2 − 3
dx

require a substitution to be made in order to integrate them.

This is somewhat equivalent to the chain rule in differentiation.

Basically, we choose the interior component and call that a new variable (usually u unless
that has already been used in the problem). We then convert everything in the integral
to be in terms of this new variable only.

If this was the right technique to employ, the new version of the integral will be some-
thing we know how to solve.
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15.2.1 Example 1

Determine
∫

7(2− 6x)5 dx using substitution.

First, let u = 2− 6x (usually the object inside the brackets).

Next, we rewrite as:
∫

7u5 dx

The problem here is that we are trying to integrate the expression 7u5 with respect to
x, so we must next deal with the dx part.

Asu = 2−6x, we can differentiate this to give
du

dx
= −6. Rearranging this gives

du

−6
= dx.

To summarise, we are trying to determine
∫

7(2− 6x)5 dx, and have u = 2 − 6x and
du

−6
= dx.

Substituting both in:∫
7u5

du

−6
or rather,

∫
−7

6
u5 du

This is now a simple integral entirely in terms of u (no x left over!) and we can evaluate
it. ∫

−7

6
u5 du = −7

6

u6

6
+ C

= −7u6

36
+ C

To finish the integral, substitute the u back to obtain the final answer in terms of the
original variable x:∫

7(2− 6x)5 dx = −7(2− 6x)6

36
+ C
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15.2.2 Example 2

Evaluate the following definite integral using substitution:

∫ 1

0

(5− x)3 dx

Be careful with the limits!

Solution:

First, we make the following substitution:

u = 5− x

Then differentiate it:

du

dx
= −1 so, rearranging gives: dx = −du

The limits are in terms of x, so they also need to converted to corresponding limits for u:

x = 0 =⇒ u = 5− (0) = 5

x = 1 =⇒ u = 5− (1) = 4

Now substitute all of these into the integral:∫ x=1

x=0

(5− x)3 dx =

∫ u=4

u=5

u3(−1) du = −
∫ u=4

u=5

u3 du

So now this is entirely in terms of u, and it is soluble:

−
∫ u=4

u=5

u3 du = −
[

1

4
u4
]4
5

= −
{(

1

4
(4)4

)
−
(

1

4
(5)4

)}
= 92.25
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15.3 Integration Using Substitution - Extra rules

We can make use of the following general results:

∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

and

∫
f ′(x) [f(x)]n dx =

[f(x)]n+1

n+ 1
+ C

and

∫
f ′(x) g (f(x)) dx =

∫
g(u) du

15.3.1 Example 3

For example, one could determine:∫
14x+ 3

7x2 + 3x− 2
dx

by recognising that it is of the form:∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

∴

∫
14x+ 3

7x2 + 3x− 2
dx = ln |7x2 + 3x− 2|+ C

Check your answer using the full substitution method.
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15.4 Exercises

Integrate the following:

1)

∫
τ

3
sin
(
τ 2
)

dτ

2)

∫
(6x+ 7)(3x2 + 7x− 8)5 dx

3)

∫
8x

4x2 − 3
dx

Solution:

1)

∫
τ

3
sin
(
τ 2
)

dτ

Let:

u = τ 2

Then differentiate it:

du

dτ
= 2τ so, rearranging: dτ =

du

2τ

Substituting both in, notice that the extra τ ’s cancel. If this didn’t happen, we could not
proceed!∫

τ

3
sin
(
τ 2
)

dτ =

∫
τ

3
sin(u)

du

2τ
=

1

6

∫
sin(u) du

Due to the cancellation, this is now a simple integral in terms of u only:

1

6

∫
sin(u) du =

1

6

(
− cos(u)

)
+ C

= −1

6
cos(u) + C

= −1

6
cos
(
τ 2
)

+ C

Being sure to give the final answer in terms of τ and not u.
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2)

∫
(6x+ 7)(3x2 + 7x− 8)5 dx

It’s not always obvious, but let’s try the “biggest” internal function:

u = 3x2 + 7x− 8

Then differentiate it:

du

dx
= 6x+ 7 so, rearranging: dx =

du

6x+ 7

Notice that, again, when we make the substitutions the remaining x term is perfectly
cancelled away! If this didn’t happen, we would have to reconsider our method - either the
wrong choice of u, or a different approach may be required altogether.∫
(6x+ 7)(3x2 + 7x− 8)5 dx =

∫
(6x+ 7)u5

du

6x+ 7

=

∫
u5 du

=
1

6
u6 + C

=
1

6

(
3x2 + 7x− 8

)6
+ C
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3)

∫
8x

4x2 − 3
dx

Usually if there are fractions, try substituting the denominator:

Let u = 4x2 − 3

Then differentiate it:

du

dx
= 8x so, rearranging: dx =

du

8x

Yet again, this will cancel the x on the numerator, so this is definitely the right method.

∫
8x

4x2 − 3
dx =

∫
8x

u
· 1

8x
du

=

∫
1

u
du

= ln |u|+ C

= ln |4x2 − 3|+ C

Or we could have solved this instantly (but still explaining our working) by recognising
that, with f(x) = 4x2 − 3, this has form:∫

f ′(x)

f(x)
dx = ln |f(x)|+ C
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16 Integration - by parts

16.1 Learning Outcomes

• Use the “by parts” technique to evaluate complicated integrals that consist of two
functions multiplied together.

16.2 Why do we need this rule?

Consider the following integrals. They are too complicated to use the standard rules, but it
does not look like we can use the substitution method either - there is no “inner” function.
Instead, these all appear to be the product of two small functions.∫

3x ln(x) dx

∫
x4 sin(x) dx

∫
ex ln(5x) dx

∫
cos(2x)

(
5x+ x3

)
dx

These are all cases where we are required to integrate products of functions in the form
g(x)f(x). In these instances we must use the by parts formula.

16.3 Integration by Parts

The “by parts” rule:

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

Integration by parts is the integral equivalent of the product rule. It is obtained by re-
arranging the product rule and integrating it.
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16.3.1 Example 1

Evaluate:∫
2x e3x dx

Let u = 2x and
dv

dx
= e3x (we will see later how to decide this)

We need to know all four terms: u, du
dx
, v, dv

dx

Therefore, differentiate u:

du

dx
=

d

dx

(
2x
)

= 2

and integrate the other:

v =

∫
dv

dx
dx =

1

3
e3x (ignore +c for now)

Substituting these values into the integration by parts rule:

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

∫
2xe3x dx = (2x)×

(
1

3
e3x
)
−
∫ (

1

3
e3x
)
× (2) dx

=
2

3
xe3x −

∫
2

3
e3x dx

=
2

3
xe3x − 2

9
e3x + C
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16.4 L-A-T-E

How do we decide which function should be u and which should be the derivative of v? It is
besttochooseuusingthe followingorderofpriority(LATE)fromhighestto lowestpriority:

Logarithmic ln(x)

Algebraic xn

Trigonometric sin(x) or cos(x)

Exponential enx

16.4.1 Example 2

Evaluate:

5x sin(7x) dx

Using LATE, choose u = 5x and
dv

dx
= sin(7x)

Therefore, differentiate u:

du

dx
=

d

dx

(
5x
)

= 5

and integrate the other to obtain v:

v =

∫
dv

dx
dx =

∫
sin(7x) dx = −1

7
cos(7x)

Substituting these values into the integration by parts rule:∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

∫
5x sin(7x) dx = (5x)

(
− 1

7
cos(7x)

)
−
∫ (

− 1

7
cos(7x)

)
(5) dx

= −5

7
x cos(7x) +

∫
5

7
cos(7x) dx

= −5

7
x cos(7x) +

5

49
sin(7x) + C
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16.5 Definite Integration by Parts

The “by parts” rule for definite integrals:

∫ b

a

u
dv

dx
dx =

[
uv
]b
a
−
∫ b

a

v
du

dx
dx

Both the first term, and the second following the integral, will need to be evaluated at the
upper and lower limits.

16.5.1 Example 3

Evaluate:∫ 2

−1
−2xe4x dx

Using LATE, choose u = −2x and
dv

dx
= e4x

We obtain the other terms as normal:

du

dx
=

d

dx

(
− 2x

)
= −2

and to obtain v:

v =

∫
dv

dx
dx =

∫
e4x dx =

1

4
e4x

Substituting these values into the integration by parts rule:∫ b

a

u
dv

dx
dx =

[
uv
]b
a
−
∫

v
du

dx
dx

We obtain:
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∫ 2

−1
−2xe4x dx =

[
(−2x)

(
1

4
e4x
)]2

−1
−
∫ 2

−1

(
1

4
e4x
)

(−2) dx

=

[
− 1

2
xe4x

]2
−1

+

∫ 2

−1

1

2
e4x dx

=

[
− 1

2
xe4x +

1

8
e4x
]2
−1

Now we simply have the extra step of evaluating both terms at the upper and lower limits,
and determine the difference:

∫ 2

−1
−2xe4x dx =

[
− 1

2
xe4x +

1

8
e4x
]2
−1

=

(
− 1

2
(2)e4×2 +

1

8
e4×2

)
−
(
− 1

2
(−1)e4×−1 +

1

8
e4×−1

)

=

(
− 7

8
e8
)
−
(

5

8
e−4
)

= −2608.3 (1 d.p.)

16.6 Exercises

Integrate the following:

∫
3x2 ln(x) dx
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17 Integration - applications

17.1 Learning Outcomes

• Apply integration to problems in an engineering context.

• Determine the area between two different curves plotted in the same plane.

17.2 Integration in an Engineering Context

Both processes of calculus can be applied to consider how certain quantities are changing
with respect to another (usually time).

Differentiation gives the rates of change of a quantity whose function is known.

Integration instead can be used to find the total amount of a quantity that ac-
cumulates over time, given that we know something about it’s rate of change or flow.
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17.2.1 Example 1

The volume of water V accumulated in a tank is given by:

V =

∫
Q dt

whereQ = (1− t)2 + 16 is the (volumetric) flow rate of water into the tank and t is time.

If V = 4 when t = 0, determine the relationship between V and t.

Note that all quantities are in SI units.

Substitute in the formula:

V =

∫
(1− t)2 + 16 dt

=

∫
1 + t2 − 2t+ 16 dt

=

∫
t2 − 2t+ 17 dt

=
1

3
t3 − t2 + 17t+ C

Using the condition to determineC:

V(t = 0) = 4 =⇒ 4 = 0 + C =⇒ C = 4

∴ V =
1

3
t3 − t2 + 17t+ 4
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17.2.2 Example 2

The amount of charge q passing a point in a circuit during a period of time τ is governed
by:

q =

∫ τ

0

i(t) dt

where i(t) is the current flow (in µA) at time 0 ≤ t ≤ τ

If i(t) = 40e−0.1t, find a relationship between the variables q and t.

Substitute in the formula and evaluate the integral:

q(τ) =

∫ τ

0

40e−0.1t dt

=

[
40

−0.1
e−0.1t

]τ
0

=
[
− 400e−0.1t

]τ
0

=
(
− 400e−0.1×τ

)
−
(
− 400e−0.1×0

)
= 400

(
1− e−0.1τ

)
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17.3 Areas Between Curves

Consider a curve y = f(x) which is above the x-axis in the region a < x < b. SupposeA is
the area bounded by the curve y = f(x), the x-axis and the vertical lines x = a and x = b:

ThenA is called the area under the curve between x = a and x = b.

The definite integral of the function in a region where the curve is above the x-axis yields
a positive value, which is exactly this area. Hence:

A =

∫ b

a

f(x) dx

However, we can extend this concept and determine areas that are defined in a more
complex manner.
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17.3.1 Example 3

Find the area enclosed between the curve y = −x2 − x+ 6 and the x-axis.

Solution:

No limits are given, so we shall have to determine appropriate limits by considering the
shape of this curve.

As this is a∩-shaped parabola, if there are two real roots then they will define the limits of
the region “contained” between the curve and the x-axis. Thus, we find them by solving
for y = 0:

−x2 − x+ 6 = 0

∴ x2 + x− 6 = 0

∴ (x+ 3)(x− 2) = 0

∴ x = −3 and x = 2

Or we could have used the quadratic formula to obtain these roots.
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Now conduct the definite integral between these limits:∫ 2

−3
−x2 − x+ 6 dx =

[
− 1

3
x3 − 1

2
x2 + 6x

]2
−3
aaaaaaaaaaaaaa

=

(
− 1

3
(2)3 − 1

2
(2)2 + 6(2)

)
−
(
− 1

3
(−3)3 − 1

2
(−3)2 + 6(−3)

)

=

(
− 8

3
− 4

2
+ 12

)
−
(

27

3
− 9

4
− 18

)

=
223

12

= 18.583 . . .
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However, integrating the function of a curve over a range of x where it is below the x-axis
gives a negative value, which is precisely−1× the area between the curve and the x-axis.

Thus, we have:

−B =

∫ d

c

g(x) dx or B =

∣∣∣∣ ∫ d

c

g(x) dx

∣∣∣∣
So what if we wish to calculate the area enclosed by a curve that is both above and below
the x-axis in different regions?

In this case, when asked to calculate the total area we must determine this positive value
by separately calculating the integrals for regions where the curve is above and below the
x-axis, and then summing their magnitudes/absolute values.

Therefore, we must begin by solving an equation to find where the curve crosses the
x-axis. That is, we must check if the roots lie within the range of interest.
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17.3.2 Example 4

Find the area between the curve y = −x2 + x+ 6 and the x-axis.

Solution

1. Either by using the quadratic equation, or factorising to y = −(x2 − x + 6) =
−(x− 3)(x+ 2), find the roots at x = −2 and x = 3.

2. Draw a graph.

3. Formulate the definite integral:

A =

∫ 3

−2
y(x) dx =

∫ 3

−2
−x2 + x+ 6 dx

4. Answer = 125/6 square units.
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17.3.3 Example 5

Find the area between the curve y = 4x− x2 and the x-axis from x = 0 to x = 5.

Solution

1. Either by using the quadratic equation, or factorising to y = x(4− x), deduce roots
at x = 0 and x = 4.

2. Draw the graph.

3. Since a root occurs in the range, the total area is split in two parts: above the x-axis
in 0 < x < 4, and below the x-axis in 4 < x < 5. We must formulate these two
integrals separately, then add their magnitudes:

A = A1 + A2

=

∣∣∣∣ ∫ 4

0

4x− x2 dx

∣∣∣∣+

∣∣∣∣ ∫ 5

4

4x− x2 dx

∣∣∣∣
=

∣∣∣∣[2x2 − 1

3
x3
]4
0

∣∣∣∣+

∣∣∣∣[2x2 − 1

3
x3
]5
4

∣∣∣∣
=

∣∣∣∣32

3

∣∣∣∣+

∣∣∣∣−7

3

∣∣∣∣
=

32

3
+

7

3

= 13 square units
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17.3.4 Example 6

Find the area between the curve y = x2−x−6 and the x-axis between x = −4 and x = 4,
and compare this with the integral:∫ 4

−4
x2 − x− 6 dx

Solution

1. Either by using the quadratic equation, or factorising to y = (x− 3)(x+ 2), deduce
roots at x = −2 and x = 3.

2. Draw the graph.

3. This time two roots occur in the range, and so the graph shows three regions. The
integrals over −4 < x < −2 and 3 < x < 4 will give positive results, while the
integral over−2 < x < 3 will be negative.
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4. To find the total area we add the magnitudes of the three areas:

A = A1 + A2 + A3

=

∣∣∣∣ ∫ −2
−4

x2 − x− 6 dx

∣∣∣∣+

∣∣∣∣ ∫ 3

−2
x2 − x− 6 dx

∣∣∣∣+

∣∣∣∣ ∫ 4

3

x2 − x− 6 dx

∣∣∣∣
=

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]−2
−4

∣∣∣∣+

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]3
−2

∣∣∣∣+

∣∣∣∣[1

3
x3 − 1

2
x2 − 6x

]4
3

∣∣∣∣
=

∣∣∣∣38

3

∣∣∣∣+

∣∣∣∣−125

6

∣∣∣∣+

∣∣∣∣17

6

∣∣∣∣
=

38

3
+

125

6
+

17

6

=
109

3
square units

5. By comparison, the single integral (where the middle region adds a negative area)
gives a smaller and negative result:

38

3
− 125

6
+

17

6
= −16

3

This is the net area under the curve.

163



17.3.5 Example 7

What do you expect the answer of the following integral to be?∫ 2π

0

sin(x)dx

Drawing a sketch, by symmetry we see that the area between 0 < x < π and the area
betweenπ < x < 2πwill cancel each other out. We confirm by calculation that the answer
is zero:∫ 2π

0

sin(x) dx =

[
− cos(x)

]2π
0

= (−1)− (−1) = 0

164



17.3.6 Example 8

Find the area enclosed between the curves

y =
√
x

and

y = x2

Solution:

The trick here is to subtract the area under the lower curve from the area under the
upper curve. The limits are found by solving the two equations simultaneously, to find
their points of intersection.

Finding the values of xwhere the curves intersect:
√
x = x2 square both sides . . .

x = x4

x4 − x = 0 factorising . . .

x(x3 − 1) = 0

x = 0 or x3 − 1 = 0

If x3 − 1 = 0, then x3 = 1 and so:

x =
3
√

1 = 1
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So the limits are x = 0 and x = 1

Evaluate the integral of the upper curve minus the lower curve with these limits:

A =

∫ 1

0

√
x− x2 dx =

∫ 1

0

x
1
2 − x2 dx

=

[
2

3
x

3
2 − 1

3
x3
]1
0

=

(
2

3
(1)

3
2 − 1

3
(1)3

)
−
(

2

3
(0)

3
2 − 1

3
(0)3

)

=

(
2

3
· 1− 1

3
· 1
)
−
(
0− 0

)
=

1

3
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18 Introduction to complex numbers

18.1 Learning Outcomes

• Learn about the existence of j, the imaginary number.

• Recognise complex numbers.

• Add, subtract, multiply and divide pairs of complex numbers (in “Cartesian form”).

18.2 Sets of Numbers

Numbers are understood to be organised in nested sets:

Set Symbol Examples

Natural numbers N 0, 1, 2, 3, ...

Integers (i.e. whole numbers) Z N and -1, -2, -3, ...

Rational numbers Q Z and all fractions

Real numbers R Q and all irrationals,

e.g.
√

2, π, e, etc

so

N ⊂ Z ⊂ Q ⊂ R

Is R the biggest set that exists, or are there still more numbers?

Quite often we are required to solve equations, such as

x− 7 = 0

Here the solution is 7, which is a member of N.

We have also solved equations such as
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x+ 4 = 0,

but if do not accept the existence of any numbers other than the members of N, then you
cannot solve this equation.

If we define the solution as being x = −4, this idea leads to an entirely new set of numbers,
the integers: Z.

Once we have accepted the set Z, we can solve a wider variety of equations. For example:

x+ 12 = 0

(x+ 9)(x+ 2) = 0,

etc.

Therefore we benefit from accepting the existence of negative numbers such as -1
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18.3 Complex Numbers

18.3.1 The Imaginary Unit

Up until this point, we assumed that there is no solution to the square root of a negative
number. So, for example, there is no solution to the equation:

x2 + 1 = 0

However, in a similar manner to the previous slides, if we can accept that another number
set exists outside of N, Z, Q and R, then we can solve this equation.

Thus mathematicians define the solution to be the imaginary number j, so that:

j2 + 1 = 0

Let’s examine the properties of our newly defined number.

If j2 + 1 = 0 then:

Definition of the imaginary unit:

j2 = −1

and

j =
√
−1

We call j the imaginary unit, as it is the unit of the imaginary numbers in the same way
that 1 is the unit of the real numbers.

Hence, we can also express the square roots of the other negative numbers in terms of
this unit j, for example:

√
−4 =

√
−1× 4

=
√
−1×

√
4

= j2
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and

√
−25 =

√
−1× 25

=
√
−1×

√
25

= j5

18.3.2 Complex numbers

Any multiples of j, such as j, j6, j0.3, j
7

3
and j2

√
3, are all imaginary numbers.

When we combine these with real numbers through addition/subtraction then we cre-
ate complex numbers, e.g.

6− j5 and −3 + j

Note: Mathematicians (andmost software)use i, while engineersuse j. Thus, anengineer
would write 3− j5, while a mathematician would write 3− 5i.

18.4 Uses of Complex Numbers

Despite their apparent lack of physical meaning, complex numbers are essential for solving
some real-world problems.

• Complex numbers can be used to represent certain engineering quantities, particu-
larly in electronics:

– AC currents and voltages

– Impedances in AC circuits

• They are also used in:

– The solution of differential equations

– Aerodynamics (potential flow in two dimensions)

– Control theory (stability analysis)

– Signal processing (spectral analysis)
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18.5 Cartesian form

The general (Cartesian/rectangular) form of a complex number is:

Standard Cartesian form of a complex number:

z = x+ jy

where x and y are real numbers (R) and j =
√
−1.

We say that the real part of z is x:

Re(z) = x

and the imaginary part of z is y:

Im(z) = y (NOT yj)
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18.6 Complex Number Arithmetic

18.6.1 Addition/Subtraction

To add/subtract complex numbers we simply add/subtract the corresponding real and
imaginary parts separately.

If z1 = 2− j3, z2 = 6− j2 and z3 = −7 + j5,

Calculate:

1) z1 + z2

2) z2 − z1

3) z2 − z3

4) z1 + z3

Solutions:

1)

z1 + z2 = (2− j3) + (6− j2)

=
(
2 + 6

)
+
(
− 3 + (−2)

)
j

= 8− 5j

2)

z2 − z1 = (6− j2)− (2− j3)

= 6− j2− 2 + j3

= (6− 2) + (−j2 + j3)

= 4 + j

3)

z2 − z3 = (6− j2)− (−7 + j5)

=
(
6− (−7)

)
+
(
− 2− 5

)
j

= 13− 7j
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4)

z1 + z3 = (2− 3j) + (−7 + j5)

=
(
2 + (−7)

)
+
(
(−3) + 6

)
j

= −5 + 2j

18.6.2 Multiplication

To multiply complex numbers we simply expand the brackets; treating j just like any other
constant.

Example:

Calculate:

1) z1z2

2) z3z2

Solutions:

1)

z1z2 = (2− j3)(6− j2)

= 12− j4− j18 + j26 (remember j2 = −1)

= 12− j22 + (−1)(6)

= 6− j22

2)

z3z2 = (−7 + j5)(6− j2)aaaaaaaaaaaaaaaaaaaaa

= −42 + j14 + j30− j210

= −42 + j44− (−1)(10)

= −32 + j44
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18.6.3 Division

To divide complex numbers, we first make the denominator real.

This can be achieved by multiplying both the numerator and denominator by the com-
plex conjugate of the denominator.

Definition of complex conjugates:

For a complex number z = x+ jy, the complex conjugate of z is:

z = x− jy

Furthermore it can be proven that

zz = x2 + y2,

a result which is purely real and has no imaginary part.
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Example:

Calculate:

1)
z3
z2

2)
z1
z2

Solutions:

1)

z3
z2

=
−7 + j5

6− j2
=

(−7 + j5)(6 + j2)

(6− j2)(6 + j2)

=
−42− j14 + j30 + j210

36 + j12− j12− j24

=
−42 + j16− 10

36 + 4

=
−52 + j16

40
=
−13 + j4

10

=
−13

10
+ j

2

5
= −1.3 + j0.4

2)

z1
z2

=
2− j3
6− j2

=
(2− j3)(6 + j2)

(6− j2)(6 + j2)

=
12 + j4− j18− j26
36 + j12− j12− j24

=
12− j14 + 6

36 + 4

=
18− j14

40
=

9− j7
20

=
9

20
− j 7

20
= 0.45− j0.35
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19 Polar form of complex numbers

19.1 Learning Outcomes

• Represent complex numbers in an Argand diagram.

• Express complex numbers in rectangular/Cartesian and polar form, and convert
between these.

19.2 Argand Diagrams

Complex numbers written in the form

z = x+ jy

are said to be in rectangular form (also called Cartesian form).

In this form we can represent a complex number graphically using the co-ordinate (x, y)
in an Argand diagram, where the x-axis is the Real part and the y-axis represents the
Imaginary part.

Plotting z1 = 2− j3 and z2 = −1 + j5 in an Argand diagram:
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19.2.1 Modulus and Argument

The Argand diagram suggests an alternative way of representing complex numbers.

Instead of using the co-ordinates (x, y) to fix the position of the end of a line in the Argand
diagram, we could define the line’s position using the modulus r (length of the line) and
the argument θ (angle relative to the positive real axis).

19.3 Polar Form

Given a complex number, z = x+ jy, where both x, y > 0:

We can calculate the modulus using Pythagoras:

r =
√
x2 + y2

and the argument can be calculated using trigonometry:

θ = tan−1
(y
x

)
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19.3.1 Measuring the Argument

If z is not in the first quadrant, we need to do more to find the argument, as it is measured
anti-clockwise from the positive real axis. By convention, it should be in the range
−π < θ ≤ +π:

Example:

This complex number is in the third quadrant.
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Using right angle trig. we initially determine the angle α by:

α = tan−1
(
|y|
|x|

)
= tan−1

(
3

6

)
= 0.464

But this is not the argument, rather:

θ = π − α = 2.678

and finally as it is rotating the “wrong” way, the argument is:

Arg(z) = −θ = −2.678

19.3.2 Alternative method for measuring the argument

An alternative approach is to always calculate θ according to:

θ = tan−1
(y
x

)
and then:

• If the complex number lies in quadrant II on the Argand diagram, then we add 180o

or π to the result.

• If the complex number lies in quadrant III on the Argand diagram, then subtract
180o or π from the result.

You may use this rule if preferred. Applying to the previous example:

Arg(z) = tan−1
(
−3

−6

)
− π = −2.678
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19.3.3 Summary

So, if

z = x+ jy

is a complex number written in Cartesian form, then

Polar form:

z = r cos θ + jr sin θ

where r is the modulus and θ is the argument

is the same complex number, but written in polar form. The shorthand form for this is:

z = r∠θ
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19.3.4 Examples 1

Express the following complex numbers in polar form:

1) z = 3 + j7

2) z = −4 + j3

Solution:

1)

Modulus:

r =
√

32 + 72

=
√

58

= 7.616

Argument:

θ = tan−1
(

7

3

)
= 1.166

Hence,

z = 7.616∠1.166
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2)

Modulus:

r =
√

32 + 42

=
√

25

= 5

Argument:

α = tan−1
(

3

4

)
= 0.644

θ = π − 0.644 = 2.498

Hence, z = 5∠2.498
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19.4 Converting to Rectangular Form

Given a complex number written in polar form:

z = r cos θ + jr sin θ

We are easily able to convert to rectangular form (by using trigonometry) by using the
formulae:

x = r cos θ and y = r sin θ

Note that in this case in does not matter which quadrant the complex number lies
in.

19.4.1 Examples 2

Express the following complex numbers in rectangular form:

1) z = 8∠2.1

2) z = 5.3∠− 3

Solutions:

1)

x = 8 cos(2.1) = −4.039 and y = 8 sin(2.1) = 6.906

∴ z = −4.039 + j 6.906

2)

x = 5.3 cos(−3) = −5.247 and y = 5.3 sin(−3) = −0.748

∴ z = −5.247− j 0.748
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19.5 Polar Form Arithmetic

Polar form can be useful since multiplications and division in polar form are much easier;
as shown by the formulae:

z1z2 = r1r2∠(θ1 + θ2)

and

z1
z2

=
r1
r2
∠(θ1 − θ2)

where

z1 = r1∠θ1 and z2 = r2∠θ2

19.5.1 Examples 3

Given that z1 = 5.3∠2.1 and z2 = 2.7∠− 0.3, determine:

1) z1z2

2)
z1
z2

Solution:

1)

z1z2 = (5.3× 2.7)∠
(
2.1 + (−0.3)

)
= 14.31∠1.8

2)

z1
z2

=

(
5.3

2.7

)
∠
(
2.1− (−0.3)

)
= 1.963∠2.4
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20 Introduction to matrices

20.1 Learning Outcomes

• Identify properties of matrices.

• Perform matrix arithmetic, i.e. addition, subtraction and multiplication.

Matricesareusedtohandlemanypiecesof informationatonce, thereby lendingthemselves
totheanalysisof systemsdescribedbyasetof similarequations. Suchapplications include:

• Circuit theory (sets of linear equations).

• Dynamical systems theory (sets of differential equations).

• Vector graphics and computer imaging.

20.2 Definitions and Notation

A matrix is a rectangular array of numbers, for example:

A =

1 −1
3 0
2 −8


and are generally represented by a bold capital letter: A, C, X etc., or by underlining the
letter, i.e. A.

The dimensions (or “order”) of a matrix are m × n where m is the number of rows and n
is the number of columns. The matrix A is a 3× 2 matrix.

20.2.1 Order

The order of a matrix is a description of its dimensions - the number of rows, then the
number of columns.

(
2
−5

)
This is a 2× 1 matrix. It is also a vector.
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(
1 −2 8
3 1 4

)
This is a 2× 3 matrix.

(
2 0 −1 6

)
This is a 1× 4 matrix.

The numbers that make up a matrix are called elements.

An element may be written aij.

The lowercase a indicates that this is an element of the matrix A.

The subscripts i and j refer to the row and column, respectively, in which the element
aij is to be found.

For example, if C is the 2× 3 matrix:

C =

(
1 0 −8
−3 2 5

)

then c12 = 0 and c23 = 5.

If the 2× 2 matrix D possessed unspecified elements, we could write it as:

D =

(
d11 d12
d21 d22

)
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20.3 Matrix Addition and Subtraction

20.3.1 Matrix Addition

It is only possible to add matrices together if they have exactly the same order, i.e. the
same number of rows and the same number of columns.

We may therefore add a 4× 2 matrix to another 4× 2, but we cannot add it to a 2× 2.

To perform matrix addition we simply add together the corresponding elements of each
matrix.

For example, if:

E =

(
5 3
−7 2

)
, F =

(
−1 5
8 −4

)
,

G =

(
−9 −7 2
1 3 −2

)
, H =

(
0 −7 2
9 −1 6

)

then . . .

E + F =

(
5 3
−7 2

)
+

(
−1 5
8 −4

)

=

(
5 +−1 3 + 5
−7 + 8 2 +−4

)

=

(
4 8
1 −2

)
These could be added as bothE and F are 2× 2.

187



Exercises:

Determine:

1) G+H

2) E +H

Solutions:

1) BothG andH have the same order (2× 3), so we can proceed:

G+H =

(
−9 −7 2
1 3 −2

)
+

(
0 −7 2
9 −1 6

)

=

(
−9 + 0 −7 + (−7) 2 + 2
1 + 9 3 + (−1) −2 + 6

)

=

(
−9 −14 4
10 2 4

)
2)E is a 2× 2 matrix, whileH is a 2× 3 matrix, so this addition is an invalid operation.

188



20.3.2 Matrix Subtraction

The same general rules concerning the addition of matrices also applies to subtraction i.e.
the two matrices involved must be of the same dimension.

Of course, when subtracting matrices, corresponding elements will undergo a subtrac-
tion rather than an addition.

Note, that just as in normal arithmetic, addition is commutative and subtraction is
not, meaning thatA+B = B + A, but it is not necessarily true thatA−B = B − A

For example, using the matrices defined earlier (E, F, G and H):

E − F =

(
5 3
−7 2

)
−
(
−1 5
8 −4

)

=

(
5−−1 3− 5
−7− 8 2−−4

)

=

(
6 −2
−15 6

)

20.3.3 Summary

Only matrices with the same order can be added/subtracted.(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
1 + 5 2 + 6
3 + 7 4 + 8

)
=

(
6 8
10 12

)
(

1 2
3 4

)
−
(

5
7

)
INVALID

(
4 −1 −2
−2 3 5

)
−
(

2 0 3
1 −4 −6

)
=

(
4− 2 −1− 0 −2− 3
−2− 1 3− (−4) 5− (−6)

)

=

(
2 −1 −5
−3 7 11

)
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20.4 Matrix Multiplication

There are three types of matrix multiplication:

• Multiplication of a matrix by a scalar.

• Multiplication of elements in one matrix by corresponding elements in another ma-
trix.

• Multiplication of a matrix by another matrix.

20.4.1 Scalar Multiplication

To multiply a matrix by a scalar (a real or complex number, rather than a vector or matrix)
simply by multiplying (“scaling”) each element of the matrix by that scalar.

Scalar Multiplication

α

(
a b
c d

)
=

(
αa αb
αc αd

)

Example: − 3

 2
8
−5

 =

 −3× 2
−3× 8
−3×−5

 =

 −6
−24
15


For a further example:

5G = 5

(
−9 −7 2
1 3 −2

)

=

(
5×−9 5×−7 5× 2
5× 1 5× 3 5×−2

)

=

(
−45 −35 10

5 15 −10

)
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20.4.2 Element-wise Multiplication

Element-wise multiplication simply refers to the multiplying of corresponding elements
in different matrices. Note that the matrices must be the same size. For example:

E .× F =

(
5 3
−7 2

)
.×
(
−1 5
8 −4

)

=

(
5×−1 3× 5
−7× 8 2×−4

)

=

(
−5 15
−56 −8

)
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20.4.3 Matrix Multiplication

Matrix multiplication is a non-commutative operation. This means that A × B is not
equivalent toB × A and does not necessarily yield the same result.

The direction of matrix multiplication can not be changed.

In fact, one direction might not even exist whilst the other does!

Thus, it is necessary to distinguish between pre-multiplying and post-multiplying, e.g.
given the matricesX andA:

• We can pre-multiplyX byA to getAX

• or post-multiply to getXA

As with addition/subtraction, multiplication can only be performed if the two matrices
involved have acceptable dimensions.

Criterion: The number of columns in the first matrix must match the number of
rows in the second.

If this is satisfied, the order of the result is given by the remaining dimensions - the
same number of rows as the first matrix and columns as the second matrix.

Then to multiply the matrices, imagine setting the rows of the first upon the columns
of the second. For example, when computing AB, we find the element in the ith row and
the jth column ofAB by multiplying the ith row ofA by the jth column ofB.

(
1 2
3 4

) (
5
6

)
=

(
1× 5 + 2× 6
3× 5 + 4× 6

)
=

(
17
39

)
2× 2 2× 1 2× 1
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Example:

CalculateE ×G:

(
5 3
−7 2

)
×
(
−9 −7 2
1 3 −2

)

2× 2 2× 3

The resultant matrix therefore exists and will be of the form:

M =

(
m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

)

2× 3

Hence,

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1)

)

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3)

)

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3) (5× 2) + (3×−2)

)
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E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3) (5× 2) + (3×−2)

(−7×−9) + (2× 1)

)

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3) (5× 2) + (3×−2)

(−7×−9) + (2× 1) (−7×−7) + (2× 3)

)

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3) (5× 2) + (3×−2)

(−7×−9) + (2× 1) (−7×−7) + (2× 3) (−7× 2) + (2×−2)

)

E ×G =

(
5 3
−7 2

)(
−9 −7 2
1 3 −2

)

=

(
(5×−9) + (3× 1) (5×−7) + (3× 3) (5× 2) + (3×−2)

(−7×−9) + (2× 1) (−7×−7) + (2× 3) (−7× 2) + (2×−2)

)

=

(
−42 −26 4
65 55 −18

)
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20.4.4 Exercises

1) Let,

B =

(
3
−2

)
, C =

(
−1 2
4 5

)
CalculateBC andCB if they exist.

2) Let,

A =

(
2 0
−1 1

)
D =

(
3 1
0 −2

)
CalculateAD if it exists.

Solutions:

1)

B =

(
3
−2

)
, C =

(
−1 2
4 5

)
As B is a 2 × 1 and C is a 2 × 2 matrix, B × C does not exist as the columns of B do not
match the number of rows ofC.

However,C ×B does exist, and the result will be another 2× 1 matrix:

CB =

(
−1 2
4 5

)(
3
−2

)
=

(
−1× 3 + 2×−2
4× 3 + 5×−2

)
=

(
−7
2

)
2)

A =

(
2 0
−1 1

)
D =

(
3 1
0 −2

)
The resultA×D will be another 2× 2 matrix:

AD =

(
2 0
−1 1

)(
3 1
0 −2

)
=

(
2× 3 + 0× 0 2× 1 + 0× (−2)
−1× 3 + 1× 0 −1× 1 + 1× (−2)

)

=

(
6 + 0 2 + 0
−3 + 0 −1− 2

)
=

(
6 2
−3 −3

)
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21 Using matrices to solve systems of linear simul-

taneous equations

21.1 Learning Outcomes

• Perform additional matrix operations such as determining the inverse, transpose
and determinant (if they exist).

• Solve pair of linear simultaneous linear equations using matrices.

21.2 Transpose of a Matrix

Taking the transpose of a matrix causes the 1st row to become the first column, the 2nd row
to become the second column, etc.

For example, if

M =

1 −1
3 0
2 −8


Then

MT =

(
1 3 2
−1 0 −8

)
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21.3 Determinant

Square matrices (with dimensions n× n) have a property called the determinant.

The determinant of matrixA can be denoted by det(A) or |A|.

For a 2 × 2 matrix A, the determinant is very simple to calculate by multiplying the
diagonal entries:

Determinant of a 2× 2 matrix:

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

Example: determinant of a 2× 2 matrix

Given the square matrix

B =

(
3 −1
4 2

)

The determinant is given by:

det(B) = 3× 2− (−1)× 4

= 6 + 4

= 10
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21.4 The Identity Matrix and Inverse Matrices

Identity matrices are square matrices in which all elements are zero except for the elements
on the leading diagonal; these are all 1, e.g.

I =

(
1 0
0 1

)
or I =

1 0 0
0 1 0
0 0 1


Pre/post-multiplying by I has no impact, i.e.

AI = A and I A = A

For a square matrixA, there may exist an inverse matrixA−1

Inverse Matrix:

AA−1 = I and A−1A = I

So an inverse matrix is analagous to the reciprocal of a number - it’s what you multiply by
to get back to 1 (or the identity):

5× 1

5
= 1

A× A−1 = I

21.4.1 Calculating the inverse of a 2× 2 matrix

For a general 2× 2 square matrixA =

(
a b
c d

)
:

Inverse of a 2× 2 matrix

A−1 =
1

ad− bc

(
d −b
−c a

)
or A−1 =

1

|A|

(
d −b
−c a

)

If the determinant of a square matrix is equal to zero, then that matrix has
no inverse!
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Example: Inverse of a 2× 2 matrix:
To find (if it exists) the inverse of 2× 2 square matrixA:

A =

(
1 −1
0 2

)
First obtain the determinant:

det(A) = (1)(2)− (−1)(0) = 2

Then as the determinant is non-zero, the inverse exists and is:

A−1 =
1

det(A)

(
2 1
0 1

)
=

1

2

(
2 1
0 1

)
=

(
1 1/2
0 1/2

)

21.4.2 Exercise: Inverse of a 2× 2 matrix

For the following square matrices, find the determinant and the inverse matrix if it exists:

B =

(
1 0
−3 2

)

C =

(
1 1
−1 −1

)
Solutions:

B =

(
1 0
−3 2

)

B−1 =
1

(1)(2)− (0)(−3)

(
2 0
3 1

)
=

(
1 0

3/2 1/2

)

C =

(
1 1
−1 −1

)

det(C) = (1)(−1)− (1)(−1) = 0

HenceC has zero determinant =⇒ its inverse does not exist.
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21.5 Simultaneous Equations

21.5.1 Motivation

Many engineering problems can be modelled as a system of simultaneous equations.

For example, let’s say that there are two materials A and B, whose densities are un-
known. You have two samples of different composites of these: one is 15% A and 85% B
and has a density of 1kgm−3, while the other is 40%A and 60%B but twice as dense. This
could be written as:

0.15A+ 0.85B = 1

0.4A+ 0.6B = 2

We wish to determine the densities of the constituentsA andB.

This is an example of a pair of simultaneous linear equations. Another example:

3x+ 2y = 16

−x+ 4y = 7

We will learn to solve them (i.e. find the unique values of x and y for which both equations
are true) using a matrix method.
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21.5.2 Matrix method for solution of simultaneous linear equations

Given a pair of simultaneous equations, ensure they are in this form first:

ax+ by = p

cx+ dy = q

1. Then write the pair of equations as a matrix equation:(
ax+ by
cx+ dy

)
=

(
p
q

)
(
a b
c d

)(
x
y

)
=

(
p
q

)
AX = B

2. So the square matrix of coefficients isA =

(
a b
c d

)
and the vectorX contains x and

y which we want to find.

3. Calculate the inverse matrixA−1

4. Pre-multiply both sides by the inverse matrix to obtainX:

AX = B =⇒ A−1AX = A−1B =⇒ X = A−1B

5. From the entries in vectorX, read off the values of x and y.

6. Substitute the values of x and y back into the original equations to verify solutions.
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Example 1

Solve for x and y:

5x+ 2y = 10

4x− 3y = 14

Re-writing this as a matrix equation,(
5 2
4 −3

)(
x
y

)
=

(
10
14

)

so we haveAX = B, where

A =

(
5 2
4 −3

)
, X =

(
x
y

)
, B =

(
10
14

)

Then,

A−1 =
1

(5)(−3)− (2)(4)

(
−3 −2
−4 5

)
=
−1

23

(
−3 −2
−4 5

)

and so

X = A−1B =
−1

23

(
−3 −2
−4 5

)(
10
14

)
=

(
58/23
−30/23

)

Thus we find x = 58/23 and y = −30/23.
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Example 2:

Solve for x and y:

3x = 7 + 5y

4y + 2x = 20

First, re-write both of these in a consistent format:

3x− 5y = 7

2x+ 4y = 20

Re-writing this as a matrix equation,(
3 −5
2 4

)(
x
y

)
=

(
7
20

)

so we haveAX = B, where

A =

(
3 −5
2 4

)
, X =

(
x
y

)
, B =

(
7
20

)

Then,

A−1 =
1

(3)(4)− (−5)(2)

(
4 5
−2 3

)
=

1

22

(
4 5
−2 3

)

and so

X = A−1B =
1

22

(
4 5
−2 3

)(
7
20

)
=

(
64/11
23/11

)

Thus we find x = 64/11 and y = 23/11.
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21.5.3 Special cases

A linear equation ax + by = d can be re-written in the form y = mx + c. In other words,
we have been trying to find the co-ordinates of the point where two straight lines intersect.

What if the pair of lines are parallel or actually the same?

In these cases (zero solutions or infinitely many solutions), the matrix of coefficients will
be uninvertible (its determinant = 0).

If the matrix of coefficients has determinant = 0, examine the two equations and determine
if they are the same equation (infinitely-many solutions), or if they are contradictory (zero
solutions).

x− 3y = 10

2x− 6y = 20

−2x+ y = 3

4x− 2y = 17

The first pair are the same, and the second pair are contradictory.
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21.5.4 Exercises

Use the matrix method to solve the following systems of simultaneous equations:

(a) 7x+ 2y = 4

3x− 5y = 6

(b) 5x− 2y = 10

3x+ 4y = 6

(c) 2x+ 8y = 12

−3x− 2y = 12
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22 Statistics I

22.1 Learning Outcomes

• Use EXCEL to obtain measures of central tendency for a data set: mean, median
and mode.

• Use EXCEL to obtain measures of dispersion for a data set: range and standard
deviation.

22.2 Introduction

Why study statistics?

Whenever information is gathered about a process, the results of an experiment, financial
patterns, the characteristics of standardised machine parts, etc, then it will be necessary to
perform statistical calculations on those data in order to be able to interpret their meaning
and infer conclusions.

22.3 Types of data

• Qualitative - nonnumeric data such as “favourite colour”, “hairstyle”, “blood
type”.

• Quantitative - data that can be represented by a number. For example, “height”,
“number of family members”.

Quantitative data are a collection of n measurements of a variable x, often written as
x1, x2, x3, . . . , xn. There are two types:

• Discrete – a variable that can be counted or that has a fixed set of values. For
example, the number of visitors to a park (you can’t have half or 0.2 of a person).

• Continuous – a variable that can be measured on a continuous scale. For example,
“temperature” or “height”.
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22.4 Measures of Central Tendency

There are three measures of central tendency:

• Mean: what we usually refer to as the average. EXCEL command: =AVERAGE(...)

x̄ =

∑n
i=1 xi
n

• Median: this is the middle value in an ordered set of data:

(
(n+ 1)

2

)th

data point.

EXCEL command: =MEDIAN(...)

• Mode: the most often occurring value. EXCEL: =MODE(...)

22.4.1 Example 1

The number of particles emitted by a radioactive source and detected by a Geiger counter
in 40 consecutive period of 1 minute were measured/recorded as follows:

1 0 2 1 3 4 0 1 5 2

2 1 1 3 2 1 3 2 1 0

4 3 2 1 0 2 1 4 2 3

3 1 4 2 3 1 2 3 0 5

Summarise the data into a frequency table and find the mean, median and mode.

Solution:

xi Frequency f fxi Cumulative frequency

0 5 0 5

1 11 11 16

2 10 20 26

3 8 24 34

4 4 16 38

5 2 10 40
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The mean:

x̄ =

∑
fxi∑
f

=
81

40
= 2.025

The median is the 20.5th value, thus 2 from the CF.

The mode is 1.
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22.5 Measures of Dispersion

There are several ways to measure how spread out the data is around the average:

• Range

• Interquartile range (IQR)

• Standard deviation

22.5.1 Range and Quartiles

The range of the data is simply the difference between the largest and smallest values.

Range = maximum value−minimum value

EXCEL command: =MAX(...)-MIN(...)

22.5.2 Quartiles and IQR

Data can also be characterised by the upper and lower quartiles. Arrange the data values
in increasing order, then . . .

The lower quartile (L25) is the median of the lower half of the data.

The upper quartile (U25) is the median of the upper half.

The difference between them is the interquartile range (IQR):

IQR = U25 − L25

EXCEL command: =QUARTILE(...,3)-QUARTILE(...,1)
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22.5.3 Example: Range and Quartiles

Example:

1 1 2 3 3 3 4 5 5 7 7 8 10 19

The range is the largest value minus the lowest value: 19− 1 = 18

There are 14 data points, so the median of the first 7 is the 4th value. Thus: L25 = 3

The median of points 8-14 is the 11th value. Thus: U25 = 7

And so we have: IQR = U25 − L25 = 7− 3 = 4

22.5.4 Population and sample

Population standard deviation: the data’s average deviation from the mean (if one has
access to all data).

σ =

√∑
(x− x)2

n
ungrouped data

OR

σ =

√∑
f(x− x)2∑

f
grouped data

EXCEL command: =STDEV.P(...)

Sample standard deviation: the data’s average deviation from the mean (if one has access
to a sample of all data).

σ =

√∑
(x− x)2

n− 1
ungrouped data

OR

σ =

√∑
f(x− x)2∑
f − 1

grouped data

EXCEL command: =STDEV(...)
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22.5.5 Return to Example 1

Determine the sample standard deviation for example 1 data using the step-by-step cal-
culation and the in-built Excel function.

In this case:

n = 40

and we already determined that the mean of this sample is:

x̄ = 2.025

Hence:

xi xi − x̄ (xi − x̄)2 f f(xi − x̄)2

0 -2.025 4.1006 5 20.5030

1 -1.025 1.0506 11 11.5566

2 -0.025 0.0006 10 0.0060

3 0.975 0.9506 8 7.6048

4 1.975 3.9006 4 15.6024

5 2.975 8.8506 2 17.7013∑
(xi − x̄)2 = 72.9741

Then the sample standard deviation is:

σ =

√
72.9741

40− 1
= 1.368
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In Excel:
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23 Statistics II

23.1 Learning Outcomes

• Working with grouped data.

• Visualising grouped data using histograms in EXCEL.

• Fitting simple curves and trendlines using EXCEL.

23.2 Grouped Data

When there are many different measurements with few/no repetition or just a large num-
ber of data, then it is only possible to make any real sense of the data if they are grouped
together in intervals.

In this case, the formulae for calculating values such as the mean are slightly different:

x̄ =

∑
fxi∑
f

(grouped data)

23.2.1 Example 1: Grouped, continuous data

The heights (in cm) of 25 people of the same age were measured. The following table shows
the data:

180.84 164.87 167.77 167.78 174.39

176.14 176.87 159.57 164.73 174.51

168.47 180.64 170.04 162.71 174.02

171.91 169.31 171.68 152.49 177.58

172.03 169.68 161.87 165.48 181.90

Summarise the data into a frequency table and find the mean.
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Solution:

Group Tally Freq. f Midpoint xi fxi C. f

150-155 I 1 152.5 152.5 1

155-160 I 1 157.5 157.5 2

160-165 IIII 4 162.5 650 6

165-170 ��IIII I 6 167.5 1005 12

170-175 ��IIII II 7 172.5 1207.5 19

175-180 III 3 177.5 532.5 22

180-185 III 3 182.5 547.5 25∑
f = 25

∑
fxi = 4257.5

x̄ =

∑
fxi∑
f

=
4252.5

25
= 170.1

The median is the 13th value, thus 172.5 from the CF. The modal group is 170-175.

23.3 Visualising Data

Graphs can be used to quickly determine key characteristics of the data under analysis.
Some possible graphs are:

• Bar charts and pie charts (discrete or qualitative data).

• Histograms/Frequency distributions (continuous, quantitative data).

• Frequency polygons.

• Cumulative frequency curves.
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23.3.1 Creating a Histogram in EXCEL

1. EnsurethattheAnalysisToolpakisenabled. InWindows10,goto“File>Options>Add-
ins” and ensure “Analysis Toolpak” is selected. For OSX, go to “Tools > Excel
Add-ins . . . ”

2. Choose a bin width suitable for your data, then create a column containing the upper
limit of all of the bins.

3. SelecttheDatatab, then“Analysis”andchoose“Histogram”fromthe list. Apop-up
box will appear.

4. For “Input range”, select all of the raw data points.

5. For “Bin range”, select the cells containing your upper limits.

6. Click on “Ouput range” and choose an area of the worksheet that will not interfere
with your raw data. Excel will create a frequency table (tally chart) here.

7. Make sure “Chart output” is ticked.

If we are given a set of ungrouped data, how many bins should we group it into for calcu-
lating statistics or when creating a histogram?

There are several rules that we can use to determine a sensible number of M bins for
a set ofN datapoints, such as:

• The square root rule: M = d
√
Ne

• Sturge’s formula: M = dlog2(N) + 1e

In each case, the “ceiling” function d e indicates that the result should be rounded up to
the nearest integer.

23.3.2 Example 2

Usingtheprocedureoutlinedpreviously, wecanproduceahistogramforExample1. There
areN = 25 datapoints, so using the square root rule we group them inM = 5 bins.
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23.4 Curve Fitting

Often we can obtain a set of experimental data, and hypothesise that the relationship
between the independent variable (that we control) and the dependent variable (that we
measure) is described by some function. If we could determine the exact relationship, we
could make further predictions by extrapolating the fitted curve.

Once we have decided on a general form of the relationship between our variables (e.g.
linear, quadratic, exponential, power law), curve fitting is the process of finding the set
of parameter values that best fits the set of experimental data.

23.4.1 Example 3

Suppose we have the set of data shown below:

Perhaps a quadratic function y = ax2 + bx + c would fit. But what values of a, b and c
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would result in the best fit?

With the trendline tool we can specify fitting a 2nd-order polynomial (a quadratic func-
tion). The best such function is y = 0.6239x2 − 8.3459x+ 1.9344

23.4.2 R2 and goodness-of-fit

In harder cases, we could choose several different models and fit the best parameter choices
in each case.
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How would we know which model described the data best by giving the closest fit?

To quantify the “goodness of fit” for each model, we can calculate the R2 value, also
called the coefficient of determination.

CalculatingR2:

For a set of N data points (xi, yi), to which a model is fitted given by y = f(x), we
calculateR2 using:

R2 = 1− SSres
SStot

Where: SSres =
N∑
i=1

(
yi − f(xi)

)2
and SStot =

N∑
i=1

(
yi − ȳ

)2

How then can we interpret the resulting value ofR2?

IfR2 is equal to 1, it means that the curve fits the data perfectly.

A smaller value (nearer to zero) indicates a poorer fit.

Given a data set, we can create a scatter plot, and undertake a curve-fitting procedure for
each reasonable model to find the best version of that model. Then, compare the resulting
R2-values and determine which was the best overall best.

EXCEL’s ability for curve fitting has limitations. Only certain simple functions can be
fitted, and some cannot be fitted if there are zeros or negative values in the data.

23.4.3 Example - curve fitting and forecasting

If we could use curve fitting to accurately fit a model to the data documenting the spread
of coronavirus in the UK as it emerges, we may be able to estimate demand for healthcare
and where and when to allocate resources.

Consider this data, which shows the number of people in hospital in Northern Ireland
with Covid-19 between February 1st and April 7th 2020.
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From the options available, the most reasonable (without using a very high-order poly-
nomial) seem to be an exponential or a cubic function. They both fit the data very well
(R2 ≈ 0.97).

Should we use these models to forecast hospitalisations in: (a) one week; (b) four months;
(c) two years after the final datapoint?
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