
Getting started with MATLAB for applied

mathematics

Dr Gavin M Abernethy

1

Contents

1 Introduction to MATLAB 3
1.1 The MATLAB environment . 4
1.2 Basics . 6
1.3 Numeric and symbolic variables . 8

1.3.1 Commands for symbolic variables 9
1.3.2 Converting numeric variables to symbolic 10

2 General calculations 11
2.1 Algebra . 11
2.2 Integration . 12
2.3 Differentiation . 13

2.3.1 Higher order derivatives . 13
2.3.2 Partial differentiation . 14

3 Visualising data 15
3.1 Curve plotting . 15

3.1.1 Symbolic (recommended for most of this module) 15
3.1.2 Numeric . 18

3.2 Scatter plots . 18
3.3 Labelling axes . 19
3.4 Changing the limits in view . 20
3.5 Plotting multiple plots on one image . 21

4 Fourier Series 23
4.1 Piecewise functions . 23
4.2 Fourier series . 23
4.3 Fourier transform of functions . 24
4.4 Fourier transform of discrete data . 24

5 MATLAB and Matrices 25
5.1 Declaring matrices . 25
5.2 Matrix algebra . 26
5.3 Determinant, Transpose and Inverse . 27
5.4 Eigenvalues and Eigenvectors . 28
5.5 Solving simultaneous equations . 29
5.6 Accessing the elements of a matrix . 30

2

1 Introduction to MATLAB

MATLAB is a computer package with its own programming language that is very widely
used in applied mathematics, theoretical physics and engineering. It has many optional
plug-in packages that have specific uses in modelling and simulation, signal processing and
control systems.
StudentsmaybeprovidedwithaMathWorksaccount. IfyouhavenotaccessedyourMath-
Works account before, do so here. Select “Check for Access”, then select your university
and enter your university e-mail address. Once you have your MathWorks account, you
caneitherdownloadMATLABor login toMatlabOnline (describedbelow)andactivate it.

Important information:

• As well as downloading your own installation of the software, you can also access
a browser-based version called “Matlab Online” (accessed here). This is the
recommended method of using MATLAB for this course, as it avoids the issues of
less-powerful computers (or if your work computer has restricted permissions), and
canbeaccessedanywherewithyourMathWorksaccount. It alsohasdrive for storing
your scripts online, allowing you to continue your work on any internet-connected
computer.

• If you have completed all of this material, and would like a more comprehensive
introduction you can also access the self-paced “OnRamp” tutorial here. This is a
self-paced tutorial that is developed by the makers of the software themselves and
should take you about two hours. If you do this early in the semester, you will find
using the software for our purposes very easy.

3

https://www.mathworks.com/products/matlab/student.html
https://matlab.mathworks.com
https://www.mathworks.com/learn/tutorials/matlab-onramp.html

1.1 The MATLAB environment

There are basically three ways to interact with MATLAB:

One way is using scripts (extension .m), as in any other programming language. This
means writing a document with a series of commands that can be saved, and when the
script is RUN, they will all be executed in sequence. When working at home or on large
projects, you should write your commands as a script.

The second way is using the command window. You can type a command after the prompt
>> and when you press Enter that command will execute immediately. This is useful

for doing some small tests on the fly, but if you wish you had done something differently
you will basically need to type it all out again, and none of what you have typed will be
saved for later use. This is why scripts should be used for everything except very trivial
tasks.

When you open Matlab for the first time, you will want to ensure that the “Editor” tab is
selected, then choose “New> Script”. Then program should then look something like the
below, although it might be rearranged and everything will be blank:

The final option are Matlab Live Scripts (extension .mlx). These are quite similar in style
to MuPAD (which is being phased out). They use all of the same commands and structure
as a regular Matlab script that executes a series of commands, but it shows you “live” all

4

of the outputs at every stage, either to the right or below the command. We will be using
these a lot in lectures and the solutions to tutorials as a way of walking you through a series
of steps. Unlike regular Matlab scripts, they cannot be opened in a regular text editor (e.g.
Sublime Text) and can only be viewed and edited using the MATLAB program itself.

For this course, I strongly recommend that you produce all of your Matlab-based
work in Live Scripts. In previous years, students have found this the most helpful way to
store a code while seeing the output simultaneously and being able to easily partition your
code with comments (click on “text” and “code” to switch between typing code in the grey
boxes and comments in the surrounding whitespace). When you are typing commands
in the Live Script, the program will suggest how to complete the command syntax, which
may also be beneficial to you.

While in the “Editor” tab, select “New > Matlab Live Script”. Then program should
then look something like the below, although it might be rearranged and everything will
be blank:

5

1.2 Basics

• Use the command clear to tell Matlab to “forget” everything it knows about
the work you have been doing so far. I usually include this at the beginning of any
self-contained scripts, so that there are no conflicting variable names. For example,
if I have been doing calculations with a matrix calledA and then want to run a script
that uses a number that is also calledA, Matlab may get confused.

• At the end of any line, you may use a semi-colon (;) to suppress the output,
meaning that it will not be printed to the command window. In a regular Matlab
script you should do this by default unless you specifically wish to see the result of a
particular command. However it is not necessary when using Live scripts.

• Use the percentage symbol (%) to make a comment in a script. It is good pro-
gramming practice to include this frequently within your script, to make clear the
structure (rather like paragraphs and subheadings in a written document) and to
explain to the reader (and yourself!) the purpose of any non-trivial line of code.

• Onthescrollbartotherightofthescriptwindow,youmayseeorangeorredhorizontal
bars. These are warnings that there are problems with your code as it is currently
written on the line indicated by the position of the bar. Red means a problem that
will actually halt the code, such as an incomplete or unrecognised command, while
orange is just a warning such as a variable that has been defined but never actually
used for anything.

6

For example, the following very simple script would allow you to change the parameters
a, b, c of a quadratic equation, and calculate the output y = ax2 + bx+ c for some input x:

% This is a script to calculate a quadratic function

% Author: GM Abernethy

% Date: 13/08/2020

% First clear any previously-assigned variables:

clear;

% Parameters:

a = 1;

b = 3;

c = -2

% Set value of x:

x = 17;

% Calculate the quadratic y = ax^2 + bx + c

y = a*x.^2 + b*x + c

Note the use of comments, and that the final line lacks a semi-colon, so that when this
script is run the value of y will be printed to the screen.

7

1.3 Numeric and symbolic variables

A variable is a quantity with an alphabetic name that you can refer to, and which can be
used to store information in MATLAB. Before use, they need to be “declared”, meaning
that you tell MATLAB that, for example, x is a variable and that it has a value of 5. To do
this, we would just type x = 5 in the command window, or as a line in our script before
x needs to be used. You will notice that x appears in the “Workspace” (see the figure). To
check the value currently assigned to x, you can type “x” in the command window:

Alternatively, you can double-click on x in the workspace, which will open the “Variables”
window.

This is more useful for when you want to inspect a variable containing a large amount of
data (for example, a 100× 5 data set that has been imported from a spreadsheet).

What we have just described is an example of using specifically a “numeric variable”.
This is one of the two different types of data that we will use in Matlab: numeric and
symbolic variables.

Numeric variables are, quite simply, variables that hold a decimal number. Matlab can
do lots of calculations with them very quickly, and they are accurate to a high number of

8

decimal places. Matlab can only understand what to do with a numeric variable after you
have assigned it a value, for example by typing T = 4 Then you can refer to T in further
calculations, and Matlab will know that it means “4”.

Symbolic variables are needed when you want Matlab to reason about expressions and
formulae, such as integration or Fourier series. They need to be declared as symbolic, but
not necessarily assigned a value, before using them. For example, if you wish to declare
that y varies as a function of x (in particular, y = sin(x)), you could write:

syms x This tells Matlab that x is a symbolic variable.
y = sin(x) Now Matlab knows that y depends on x in this way, and is also a

symbolic variable.

If we were then to write x=10; eval(y) Matlab would then think of x as a numeric
variable equal to 10, and would return the value of y based on this.

1.3.1 Commands for symbolic variables

When Matlab is using symbolic variables (for example when working with integration or
matrices), it will never make any approximation. So if your answer was 17π − 1

3
, and

the calculation had involved symbolic computation, Matlab would give you an answer
stated as “17π − 1

3
”, as there is no way to state it any more simply without making some

approximation. However, you may wish to obtain an approximate decimal answer (it will
still be to a very high degree of precision!), so you can force Matlab to give you this using
double() . This converts a symbolic variable to a double-precision numeric variable.

Example

y =

∫ π

0

x dx =
1

2
π2 = 4.9348 . . .

syms x

y = int(x, x, 0 , pi)

double(y)

If Matlab gives you an answer in symbolic variables that looks very complex, it might
sometimes be possible to simply or factorise it further. You can try this using the com-
mand simplify(). For example, to factorise the x out of x2 + 13x:

9

syms x

simplify(x^2 + 13*x)

Matlab can also show you symbolic expressions in a “nice” display format using the com-
mand pretty(). Compare the outputs of the following commands:

syms x

x^(-0.5)

pretty(x^(-0.5))

1.3.2 Converting numeric variables to symbolic

Whilst double() converts a symbolic variable to a numeric variable, so that we can
obtain a decimal approximation, we can also use sym() to convert an existing numeric
variable to a symbolic variable.

Compare the outputs of the following commands:

x = 1/3

y = sym(1/3)

As we can see, if we declare 1/3 in MATLAB, this is actually stored as a high precision
numeric approximation of 0.333333333. Whilst to make clear that we want to work with
the precise fraction, we can use sym(1/3)

10

2 General calculations

2.1 Algebra

Like a calculator, Matlab will use the order of operations rules (you may know this as
“BODMAS”, “BIDMAS”, or “PEDMAS”) when deciding what order in which to evalu-
ate operations (multiplication, addition, etc.) so you will need to think carefully about
where brackets are required!

Addition and subtraction use + and - as you would expect.

To multiply two variables use * as is the case in most programming languages.

Raise numbers to a power using .^

Square roots, sine, cosine, logarithms and exponentials are written as functions, with
the input in brackets: sqrt() sin() cos() ln() exp()

Example 1:

y = 6(π − 273) +
5

19
+ 42π−2 − cos(4π)

y = 6*(pi - 27.^3) + 5/19 + 42*pi.^(-2) - cos(4*pi)

Example 2:

y =
13x− π

(14 + x)(2− cos(x))

y = (13*x - pi)/((14 + x)*(2 - cos(x)))

Example 3:

y =
√

2x− e−3x

y = sqrt(2*x) - exp(-3*x)

11

2.2 Integration

Integration uses the int command. This takes several arguments: the function to be
integrated, the symbolic variable you are integrating with respect to, and (optionally)
the lower and upper limits for definite integration. The variable (usally t or x) must be
declared as symbolic first.

Example 1:∫
3x+ 1 dx

syms x

int(3*x+1 , x)

Example 2:∫ 5π

0

sin(2t) dt

syms t

int(sin(2*t) , t , 0 , 5*pi)

In this second example, we added two arguments: the lower and upper bounds for t. The
order of these is important - the limitsmust come after the function and then the variable.

12

2.3 Differentiation

Differentiation uses the diff command. As with integration, this requires two argue-
ments: the function to be differentiated, and then the symbolic variable you are differen-
tiating the function with respect to.

Make sure that you declare the necessary symbolic functions beforehand using syms , as
shown in the examples.

Example 1:

d

dx

(
sin(2x)

)
syms x

diff(sin(2*x), x)

This can be combined with the solve function to help us determine the location of sta-
tionary points.

Example 2:

Let’s say we wanted to determine the values of x where y = sin(2x) has a stationary
point (that is, the gradient is equal to zero):

syms x

solve(diff(sin(2*x), x) == 0, x)

Be aware that:

• When asking MATLAB to check an equality, as in this case where we are asking
when is the derivative equal to zero (rather than telling MATLAB to assign a value
of zero to a variable), we need to use == rather than a single equality symbol.

• There are multiple solutions (infinitely-many, in fact, due to the periodicity of sin
and cos) and MATLAB has only returned the simplest one of these.

2.3.1 Higher order derivatives

To obtain a higher-order derivative, such as the second derivative, you can simply nest
multiple calls of the diff function so that the output of differentiating once is then
passed as the input to the next call of the command. For example, to obtain d2y

dx2
where

13

y = x3:

syms x

y = x^3

diff(diff(y, x), x)

However, this is a bit inelegant if we frequently need to use higher-order derivatives such as
the fourth or fifth derivative. As an alternative to nesting multiple copies of the command,
we can pass the order as an argument. So instead of the above, we could instead write:

syms x

y = x^3

diff(y, x), x, 2)

and so for a different example, we could easily obtain the 6th derivative of sin(3x) w.r.t. x
using:

syms x

y = sin3*x)

diff(y, x), x, 6)

2.3.2 Partial differentiation

Partial differentiation is actually the same as regular differentiation in MATLAB, using
the diff command with two arguments. The only difference is that you will need to
remember to declare all variables as symbolic first. For example:

∂

∂x

(
xy2 + 3y sin(x)

)
syms x y

diff(x*y*y+3*y*sin(x) , x)

14

3 Visualising data

3.1 Curve plotting

MATLAB has many different commands for seemingly-basic functions such as curve-
plotting, that all work in slightly different ways and situations.

3.1.1 Symbolic (recommended for most of this module)

Forvisualisinga simple function, suchasa sinewaveoraHeaviside function, wecandeclare
it as a symbolic variable and then use fplot to visualise it over the default range of x,
which is [−5, 5]:

syms x

y = sin(x)

fplot(x,y)

If we want to draw the graph for a different range, say−10 < x < 17, this is implemented
as an optional argument (extra terms separated by commas) when the fplot command
is used:

15

syms x

y = sin(x)

fplot(x,y,[-10, 17])

These curves are a bit thin and hard to see. Fortunately, almost everything can be cus-
tomised in MATLAB, so a clear improvement would be to draw a thicker curve when
plotting. Like the range of x, this information is included within the fplot command:

syms x

y = sin(x)

fplot(x,y,’LineWidth’,3)

16

and we can combine multiple of these optional arguments - so to change both the range of
x and the curve thickness:

syms x

y = sin(x)

fplot(x,y,[-10, 17],’LineWidth’,3)

17

3.1.2 Numeric

This is not really needed for this module, but it is much more powerful for real applications
in research.

For plotting curves from numeric data sets, or anything that isn’t necessarily a pre-defined
symbolic function, we can use the standard plot command. However, this requires two
arguments: one vector containing all the x-coordinates of the points that you wish to join
up, and a second vector of equal length containing the corresponding y-values.

For example, to plot the graph of y = sin(x) between x = 0 and x = 5:

x = linspace(0,5,1000)

This creates a vector of 1000 evenly spaced values between 0 and 5. These will be the
x-coordinates of the points that plot will then join up.

y = sin(x)

plot(x,y)

As with the fplot command, you can include optional arguments in the plot com-
mand to customise the graph, such as changing the line thickness:

plot(x,y,’LineWidth’,5)

3.2 Scatter plots

If we are working with a real, collected data set of discrete points, it would not be appro-
priate to draw a curve joining the actual data up.

Instead, we would probably want to draw a scatter plot showing the actual points (and
then perhaps compare this with a curve of a fitted function). We can achieve this with the
scatter function.

For example, imagine we had recorded the temperature in the Sheaf building on seven
non-consecutive days in a two-week period. If we store the days in a column vector t (for
time), and the recorded temperature in a column vector T (also of length seven):

18

t = [1 2 5 8 9 11 14]

T = [18.6 19.1 18.3 17.9 17.6 18.2 18.5]

scatter(t, T)

We can add extra arguments to the scatter command to change the size, shape and
colour of the points.

(a) scatter(t,T) (b) plot(t,T)

3.3 Labelling axes

After drawing an image with fplot , plot , scatter or some other command, we
can add a title and labels to the axes using additional commands.

To label the x-axis “Time (days)” and the y-axis “Temperature (celsius)”, and add a
title to our scatter plot:

xlabel(‘Time (days)’)

xlabel(‘Temperature (celsius)’)

title(‘Temperature in Sheaf during a two-week period’)

Note that you must include the quotation marks.

19

3.4 Changing the limits in view

There are many other customisation options for images produced in Matlab. Probably
the most useful one is for when you want to change the limits on the axes that are in view
of a graph that has already been plotted.

To do this, follow-up with the commands xlim and/or ylim as appropriate.

For example, if we wanted to zoom in on the graph between x = 1 and x = 2, we would
use the command:

xlim([1 2])

and similarly for the y-axis using ylim

Note that this is only useful if the graph has already been plotted within the range that
you wish to see. If this is not the case, you will need to redraw the graph.

Let’s put everything together to draw a nice graph of the function y = sin(x), controlling
the range, line thickness and labelling the axes. Rather than having the graph fill the win-
dow by default, we’ll use ylim to zoom out and get a better view. First, we’ll increase
the font size so our axes labels are easier to read:

syms x

y = sin(x)

Now we set the font size, then plot the graph over our desired range of x:
set(0,’DefaultAxesFontSize’,15)

fplot(x,y,[-10,17],’LineWidth’,3)

Then add the title and axis labels:
xlabel(’x’)

ylabel(’y’)

title(’A graph of y = sin(x) over the range -10<x<17’)

Finally, use ylim to zoom out the y-axis:
ylim([-1.5, 1.5])

20

3.5 Plotting multiple plots on one image

You can also use the command hold on; to plot multiple functions on the same image, as
otherwise each new use of plot will replace the previous graph.

For example, say we have two different sets of results y1 and y2 for a given set of x-values.
To plot them on the same graph and add a legend:

plot(x , y1)

hold on

plot(x , y2)

legend(‘Data set y1’, ‘Data set y2’)

Youmust thenuse hold off if youwant to subsequentlyplotadifferentgraphaltogether.

For example, let’s say we want to plot both sin(x) and cos(x) on the same graph, each
over the range−10 < x < 17 , but with different line thicknesses:

21

syms x

y1 = sin(x)

y2 = cos(x)

Now we plot the two graphs on the same axes:
set(0,’DefaultAxesFontSize’,15)

fplot(x,y1,[-10,17],’LineWidth’,2)

hold on

fplot(x,y2,[-10,17],’LineWidth’,4)

Then add the legend, title and axis labels:
legend(’sin(x)’,’cos(x)’)

xlabel(’x’)

ylabel(’y’)

title(’Sine and cosine, with different thicknesses’)

ylim([-1.5, 1.5])

hold off

22

4 Fourier Series

4.1 Piecewise functions

Fourier series often requires constructing piecewise-continuous functions. These can be
made from a combination of Heaviside step functions.

For example, a signal f(t) that is zero for t < 0 and has a constant value of 4 for t > 0 can
be described as:

f(t) = 4H(t)

And this function can be declared and plotted in Matlab:

syms t

f = 4*heaviside(t)

fplot(t, f)

4.2 Fourier series

To find the Fourier series of a function f(t), let’s say up to the 4th partial sum (up to the
terms including a4 and b4), we will need to:

• Declare t as a symbolic variable: syms t

• Perform the interal to calculate a0

• Perform a series of integrals to calculate a1, a2, a3, a4

• Perform a series of integrals to calculate b1, b2, b3, b4

• Assemble the approximation of the Fourier series by adding together:

FourierApprox = a0/2 + a1*cos(w*t) + b1*sin(w*t)

+ a2*cos(2*w*t) + b2*sin(2*w*t)

+ a3*cos(3*w*t) + b3*sin(3*w*t)

+ a4*cos(4*w*t) + b4*sin(4*w*t)

• Plot both the actual function and the approximate Fourier series on the same graph.

23

See earlier in this document for a guide to integration and plotting multiple graphs.

Once these are plotted, we can see how well the approximate Fourier series fits the true
function. If it is a poor fit, we may need to build a more accurate Fourier partial sum by
adding in some more terms (a5, b5, a6, b6, etc.) and plotting again.

4.3 Fourier transform of functions

We can perform a Fourier transform of a function f(t) from the time domain to the fre-
quency domain using the fourier command, which has three arguments:

• The first argument is the function f .

• The second is the variable that f is a function of (in this case, t).

• The final argument is the variable we are transforming to,which is frequency. This
uses the variable ω, but we’ll just usew as a stand-in.

Thus, to store the Fourier transform of f(t) = H(t)−H(t− π) and as a variable F :

syms t w

f = heaviside(t) - heaviside(t - pi)

F = fourier(f, t, w)

4.4 Fourier transform of discrete data

We will go through the process of discrete Fourier transforms in Lecture 11. In this docu-
ment we will just go over the new Matlab commands requried during the procedure.

To take the discrete Fourier transform of our sampled data, stored in a column vector
f , we use the Fast Fourier Transform algorithm:

F = fft(f)

Theresultwill beavectorF of complexnumbers, consistingof a realpart andan imaginary
part. We only want the magnitudes (or “absolute values”) of these numbers, which means
their distance from the origin. To store these in a column vectorm:

m = abs(F)

24

5 MATLAB and Matrices

5.1 Declaring matrices

To name and store a matrix in Matlab, use square brackets and write the list of elements
in each row from left to right, starting with the top row. Separate the elements in each row
by a space, and separate the rows themselves with a semicolon.

To declare the following matrix:

A =

(
1 2 3
4 5 6

)
we write:

A = [1 2 3; 4 5 6];

We can also create an empty matrix containing only zeros, with a particular set of dimen-
sions. This is sometimes useful for preparing to store large data sets incrementally in the
matrix. For example, to create an empty 2× 7 matrix F :

F = zeros(2,7)

25

5.2 Matrix algebra

Addition, subtraction, scalar multiplication and matrix multiplication all work very sim-
ply in the way you would expect.

A = [1 2; 3 -4];

B = [4 -6; -1 2]

C = A + B (matrix addition)

D = A - B (matrix subtraction)

E = 5*A (scalar multiplication)

F = A*B (matrix multiplication)

Don’t forget that the order of matrix multiplication is very important!

26

5.3 Determinant, Transpose and Inverse

Simple MATLAB commands exist for most important matrix operations.

A = [1 2; 3 -4]; (declares the matrixA)

B = transpose(A); (matrixB is the transpose ofA)

C = inv(A); (C is the inverse matrix ofA)

d = det(A); (obtain the determinant ofA)

Remember that the inverse does not exist for a non-square matrix. If you attempt this,
you will receive the error:

Error using inv. Matrix must be square.

and the script will fail. However, you must also remember that the inverse of a square
matrix does not exist if the determinant is zero, and you should always check this before
attempting to calculate the inverse. If you ask Matlab for the inverse of a matrix with zero
determinant it will not fail, and you will simply receive the message:

Warning: Matrix is singular to working precision.

It will be up to you to realise that this means you should not proceed.

27

5.4 Eigenvalues and Eigenvectors

MATLAB can automatically determine the eigenvalue and eigenvector pairs of a square
matrix for you, using the Symbolic Math Toolbox:

A = [1 2; 3 -4];

B = sym(A);

[vecA,valA] = eig(B);

This first creates a symbolic version B of the matrix (which Matlab needs to do in order
to handle more abstract mathematical operations) and then produces two matrices, valA
contains the eigenvalues on the diagonal (with zeros elsewhere) and vecA contains the
eigenvectors in each column. The ordering between the two corresponds, so the first col-
umn of vecA is the eigenvector corresponding to the eigenvalue in the first diagonal entry
of valA.

To find a unit vector, we need to first obtain the magnitude of the vector, and then divide
the vector by this magnitude:

X = [3; 17]; (declare a vectorX)

mag = norm(X); (obtain the magnitude ofX and store it asmag)

unitX = X/mag; (obtain the unit vector and store it as unitX)

28

5.5 Solving simultaneous equations

To use this method does not require any additional commands, but a combination of what
we have learned. Let’s revisit Example 1 from Section 4.2 and carry out the method in
Matlab:

5x+ 2y = 10

4x− 3y = 14

A = [5 2; 4 -3];

B = [10; 14];

X = inv(A)*B

Note that this will provide decimal answers. To obtain the precise fractions that we found
when solving by hand, we simply ask Matlab to convert the answer to a symbolic variable:

sym(X)

29

5.6 Accessing the elements of a matrix

An element (i.e. one of the entries) of a matrix M can be referred to using the format
M(row, column).

For example, consider the matrix:

A =


16 3 2 12
5 10 11 8
9 6 7 12
4 15 14 1


We can declare this matrix and then access the elementA3,2 = 6 using:

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A(3,2)

We can also access a range of values using a colon, soM(i : j, k) refers to the rows i to j of
the kth column. For example:

A(2:4,3)

accesses the 2nd, 3rd and 4th entries of the 3rd column ofA and gives the output:

Or we can leave the colon by itself to refer to an entire row or entire column. For example:

A(:,2)

accesses the entire second column of matrixA and gives the output:

30

You can access a range of rows and columns simultaneously, so for example you could
extract the elements of the first two rows and the first two columns of A and assign them
to a new 2× 2 matrixB using:

B = A(1:2, 1:2)

31

	Introduction to MATLAB
	The MATLAB environment
	Basics
	Numeric and symbolic variables
	Commands for symbolic variables
	Converting numeric variables to symbolic

	General calculations
	Algebra
	Integration
	Differentiation
	Higher order derivatives
	Partial differentiation

	Visualising data
	Curve plotting
	Symbolic (recommended for most of this module)
	Numeric

	Scatter plots
	Labelling axes
	Changing the limits in view
	Plotting multiple plots on one image

	Fourier Series
	Piecewise functions
	Fourier series
	Fourier transform of functions
	Fourier transform of discrete data

	MATLAB and Matrices
	Declaring matrices
	Matrix algebra
	Determinant, Transpose and Inverse
	Eigenvalues and Eigenvectors
	Solving simultaneous equations
	Accessing the elements of a matrix

