Tutorial Sheet: MATLAB

This tutorial will help you to practice the use of MATLAB for applied mathematics. You
may use the command line to test commands, but you should save your work in a script or
a Live Script so that you can refer to them later.

Matlab Live Scripts are particularly helpful as they allow you to see the code, your
commentary, and all of the output (e.g. graphs) at the same time. To do this, click
“New” > “Live Script”, and then make sure to saveit. Type your commands in the grey
boxes of the script (one per line), and add comments using the percentage sign % or by
clicking “Text” so that you can explain to yourself what each command does and also
to label “Q2(b)” ete. .. To execute all of the commands in your script line-by-line, click

((Run” .

1. Numeric and symbolic variables - what’s the difference?

MATLAB makes a distinction between numeric variables, which are numbers stored
to a high-precision decimal, and symbolic variables which are used for symbolic al-
gebra (differentiation, integration, etc.) and store the numbers as “precise” such as

fractions.
(a) Type 1/3 inthe command window, and press enter. What is the output?
(b) Now, type sym(1/3) Do you see a different result?

Lets’s store some variables. Type x = 1/3 Isz numeric or symbolic?
Type y = sym(1/3) Isy numeric or symbolic?

We can obtain the value of a symbolic variable as a decimal approximation.
Type double(y)

Type clear . What has this command done?

Store 2/3 in Matlab as a decimal approximation, stored as a variable called z.
Obtain the value of z as a precise fraction.

Store 4/3 in Matlab as a precise fraction, stored as a variable called w.

Obtain the value of w as a decimal approximation and store it in a variable
called w2.

We can declare a variable as symbolic without giving it a specific value. Try
typing syms p

2. Calculations:

Calculate the following using MATLAB commands. Remember that MATLAB
will use the order of operations (BODMAS) when evaluating calculations, so you
may need to use brackets!

You may choose whether to give your final answers as precise values (using sym-
bolic variables) or as decimal approximations, but ensure that you know how to
work with both.

(a) (f)

39
15"‘? f(x)z/élx—i—ldx

15+ 39
=27
2 / sin(3z)dz

=0

k=6x104—273 (b)

t=3 ot
(d) M = / t - cos (—) dt
t=—5 ™

cos()

. _/z:“ 32+ 22— T &
y=(e? +\/1_9) y= - 3 + sin(2z)

=—T

3. Graphs and plotting, Part 1:

Lets’s create a simple plot of sin(x) and sin(2z + 1) on the same graph and cus-
tomise it.

(a)

To use the simpler version of curve plotting, we will need to use “symbolic
variables”. First, declare x as a symbolic variable.

Then create our two dependent variables:
yl =sin(x) and 42 =sin(2z+ 1)
Use fplot to plotagraph of y1 against x.
What command is needed to plot another function on this same graph?
Plot y2 against x on the same graph.

I am particularly interested in the behaviour of these functions in the range
2 < x < 6. Change the limits of z so that this is what is in view.

As you can see, it turns out that fplot only draws the graphs between
—5 < x < 5 by default. To correct this, we will need to start again. First, call
hold off sothat the next plot replaces everything we have done so far.

To re-plot y1, drawing it between 2 < x < 6, we can add an argument to the
fplot command that contains the lower and upper limits for z:

fplot(x , y1, [2 61)

Re-plot y2 against x over the same range on this same plot.

Label the x-axis as “x”, and the y-axis as “y”.

Add alegend, calling y1 and y2 “Dataset 1” and “Data set 2” respectively.

4. Graphs and plotting, Part 2:

This version of graph plotting uses discrete numeric data rather than symbolic vari-
ables. It can be a little more complicated.

A medical student decides to record my sugar intake (in kg) at the same time on
ten consecutive days. This results in a set of ten data points, with an independent
variable - time ¢ (in days) - and a dependent variable - mass M of sugar (kg).

(a)

(b)

Input these two variables as column vectors by typing the commands below:

ct
|

=[123456789 10];
[0.573 0.366 1.900 0.841 0.155
1.910 1.187 0.040 1.703 1.4117;

=
I

Experiment to find out the significance of including the semicolon at the end
of the command.

Create a scatter plot of these data points.

The student hypothesises that this data may fit a pattern of M = cos(2t) 4 1
(note that we could determine the valuesa = 2and b = 1 from M = cos(at) +b
using the curve fitting techniques that we have done previously!)

Create a new variable Mpred = cos(2t) + 1 and plot it as a curve on the
same graph.

As you can see, this fitted function does not seem like a smooth cosine curve.
This is because Matlab has determined the value of Mpred on each of the 10
daysandthen plot hassimply connected the points. To view how these data
compare to a better drawing of cos(2t) + 1 we need to do the following;:

[t2 = linspace(1 , 10 , 1000)

This creates a vector of 1000 evenly-spaced data pointsin therange 1 < ¢t < 10
that we are looking at.

Mpred2 = cos(2 * t2) + 1

This determines the predicted values of M for each of those 1000 new values of ¢.

[plot(t2, Mpred2)

Assuming you already used hold on ,thissuperimposes this third plot onto
our image.

This should look much more accurate now!

Add alegend to the graph, naming the three plots, and appropriate labels on
the x-axis and y-axis.

If you have further time during the tutorial, you may wish to experiment us-
ing the additional customisation options for the plot and scatter com-
mands. You can find information on these using the comprehensive Mathworks
website:

https://uk.mathworks.com/help/matlab/ref/plot.html

Finally, you may wish to save this customised image. Find out how to do
that, choosing the size, name, and file type (PNG, JPEG, etc.) here:

https://uk.mathworks.com/help/matlab/ref/print.html

