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Today we will cover. . .

Differentiation as gradient and rate-of-change.

Standard rules of differentiation.

Product rule.

Chain rule.

Higher-order derivatives.

Maxima and minima of functions of one variable.

This will be a brief summary, as these topics should be familiar to
all students. If you need extra practice, make use of the plentiful
material and examples provided on the module Blackboard site.
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Differentiation

Given a function y = f (x), the “derivative of y with respect to x”
can be written as:

dy

dx
or y ′

This yields the gradient (slope) of the function, which is equivalent
to its rate of change as x changes.

The derivative with respect to time t, may also be expressed as ẏ .
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Standard rules of differentiation

For constants a and n:

y = axn =⇒ dy

dx
= anxn−1

y = ax =⇒ dy

dx
= a

y = a =⇒ dy

dx
= 0

y = ex =⇒ dy

dx
= ex

y = sin(x) =⇒ dy

dx
= cos(x)

y = cos(x) =⇒ dy

dx
= − sin(x)

y = ln(x) =⇒ dy

dx
=

1

x
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Standard rules of differentiation - Examples

Examples:

Differentiate:
y = 5x2, y = −3t10

x = sin(t), y = 2
√
x

y = − 4

x3
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Standard rules of differentiation - Solutions

d

dx

(
5x2

)
= 5× 2x2−1 = 10x

d

dt

(
− 3t10

)
= −3× 10t10−1 = −30t9

d

dt

(
sin(t)

)
= cos(t)

d

dx

(
2
√
x
)

=
d

dx

(
2x1/2

)
= 2× 1

2
x1/2−1 = 1x−1/2 =

1√
x

d

dx

(
− 4

x3

)
=

d

dx

(
− 4x−3

)
= (−4)× (−3)x−3−1 = 12x−4 =

12

x4
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Linearity

Given two functions f and g ,

y = f (x)± g(x) =⇒ dy

dx
=

df

dx
± dg

dx
= f ′(x)± g ′(x)

If a is a constant, then:

y = af (x) =⇒ dy

dx
= a

df

dx
= af ′(x)

Example:

d

dx

(
x4 + 13 sin(x)

)
=

d

dx

(
x4
)

+ 13
d

dx

(
sin(x)

)
= 4x3 + 13 cos(x)
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Gradient of a curve

Differentiating the formula for a curve yields a formula for the
gradient of that curve at any point. In most cases, this gradient is
dependent on x . Therefore, to find the gradient of a curve at a
particular point, differentiate first and then substitute in the
particular value of x to the formula obtained for dy

dx .

Example:

Find the gradient of the curve y = x2 + 4x − 7 at the point (2, 5).

Solution:
y ′(x) = 2x + 4

y ′(x = 2) = 2(2) + 4 = 8
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The Product Rule

Suppose f (x) is the product of two functions (i.e. the result of
multiplying them together):

f (x) = u(x) · v(x)

Then the derivative is given by the Product Rule.

Product rule

df (x)

dx
= v(x) · du(x)

dx
+ u(x) · dv(x)

dx

This may also be written as:

(uv)′ = vu′ + uv ′
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The Product Rule

Example:

Differentiate y = x2 sin(x)

Solution:

Let u = x2 and v = sin(x)

Then
u′ = 2x and v ′ = cos(x)

Thus

y ′ = (uv)′ = u · v ′ + u′ · v
= x2 cos(x) + 2x sin(x)

Dr Gavin M Abernethy Revision of differentiation



The Product Rule

Example:

Find dy
dx when y = ex cos(x)

Solution:

Let u = ex and v = cos(x)

Then
u′ = ex and v ′ = − sin(x)

Thus

y ′ = (uv)′ = u · v ′ + u′ · v
= ex(− sin(x)) + ex cos(x)

= ex
(

cos(x)− sin(x)
)
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The Chain Rule

A composite function is defined as a “function of a function”. For
example, h(x) is a composite function when:

h(x) = g(f (x))

where f and g are functions. In this case, to calculate the output
of h, x is the input to function f and the output is then taken as
the input for function g .

Examples of composite functions:

y = sin(3x + 1), y = ex
2+2

y = (2x − 5)4, y = cos(sin(x))
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The Chain Rule

To differentiate composite functions, we use the Chain Rule.

If y = g(f (x)), then we write u = f (x) and so y = g(u). Then. . .

Chain rule

dy

dx
=

dy

du
· du
dx

Always state final answers in terms of the original variables - in this
case, x not u.
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The Chain Rule

Example:

If y = sin(3t2 + 5), find y ′

Solution:

Let u = 3t2 + 5 then y = sin(u)

Then
du

dt
= 6t and

dy

du
= cos(u)

Thus

dy

dt
=

dy

du
· du
dt

= cos(u) · (6t)

= 6t cos
(
3t2 + 5

)
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The Chain Rule

Example:

Find dy
dx when y = ex

2+3x−1

Solution:

Let u = x2 + 3x − 1 then y = eu

Then
du

dx
= 2x + 3 and

dy

du
= eu

Thus

dy

dx
=

dy

du
· du
dx

= eu ·(2x + 3)

= (2x + 3) ex
2+3x−1
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The Chain Rule

By applying the chain rule, we can derive some additional standard
rules.

If a is a constant,

y = sin(ax) =⇒ dy

dx
= a cos(ax)

y = cos(ax) =⇒ dy

dx
= −a sin(ax)

y = tan(ax) =⇒ dy

dx
= a sec2(ax)

y = eax =⇒ dy

dx
= a eax
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Second-order Derivatives

Differentiating a function y = f (x) with respect to x yields the
“first derivative” of y , denoted by y ′, f ′(x), or dy

dx .

Differentiating the result (with respect to x) yields the “second
derivative” of y , denoted by:

d2y

dx2
or y ′′ or f ′′(x)

This tells us the rate at which the gradient of y changes.

Examples

(1) f (x) = 5x3 =⇒ f ′(x) = 15x2 =⇒ f ′′(x) = 30x

(2) f (x) = 6 ex =⇒ f ′(x) = 6 ex =⇒ f ′′(x) = 6 ex
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Physical applications of differentiation as “rate of change”:

Suppose an object moves in a straight line with its position along
the line x(t).

Velocity is the rate of change of position, so:

v(t) =
dx

dt

Acceleration is the rate of change of velocity, so:

a(t) =
dv

dt

Therefore we also note that

a(t) =
d

dt

(
dx

dt

)
=

d2x

dt2
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Physical applications of differentiation as “rate of change”:

Example

A car moves in a straight line from A to B. At any time t (in
seconds), the displacement of the car from A is given by:

x(t) = t3 + 2t2 metres

What is the acceleration of the car after 4s?

Solution:

a(t) =
d2

dt2

(
t3 + 2t2

)
=

d

dt

(
3t2 + 4t

)
= 6t + 4

∴ a(t = 4) = 6(4) + 4 = 28 ms−2
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Maximising and Minimising Functions

We may want to find extreme values of a function f in a range of
x . This occurs where the gradient is zero (or at boundaries).

Stationary Points: If f ′(x) = 0 when x = a for some value a,
then a is called a stationary point or turning point of the function
f . There are three types:
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Maximising and Minimising Functions

To find the maximum and minimum points of a curve y = f (x):

1 Calculate the first derivative dy
dx

2 Solve the equation dy
dx = 0 for x . This tells us the location of

points where the gradient is zero (i.e. the stationary points).

3 Calculate the second derivative d2y
dx2

4 Determine the value of d2y
dx2 at each stationary point, and

apply the “Second Derivative Test”:

d2y

dx2
> 0 =⇒ local min.

d2y

dx2
< 0 =⇒ local max.

d2y

dx2
= 0 =⇒ no conclusion
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Maximising and Minimising Functions

Example:

Find and classify the stationary point(s) of

y = x2 + 4x − 1
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Maximising and Minimising Functions

Solution:
Obtaining the first derivative:

y ′ = 2x + 4

Finding the values of x where gradient is zero:

y ′ = 0 =⇒ 2x + 4 = 0 =⇒ x = −2

Then obtaining the y -coordinate:

y(x = −2) = (−2)2 + 4(−2)− 1 = −5

And applying the second derivative test:

y ′′ = 2 =⇒ y ′′(x = −2) = 2 > 0

Hence, (−2,−5) is a minimum turning point.
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MATLAB

Differentiation uses the diff command, which requires two
arguments: the function to be differentiated, and then the symbolic
variable you are differentiating with respect to. For example:

d

dx

(
sin(2x)

)
syms x

diff( sin(2*x), x )

This can be combined with the solve function to determine the
location of stationary points:

syms x

solve( diff( sin(2*x), x ) = 0, x )
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