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1 Differentiation

1.1 In this section:

These notes briefly revise the following topics:

• Differentiation as gradient and rate-of-change

• Standard rules of differentiation

• Chain rule

• Product rule

• Higher-order derivatives

• Maxima and minima of functions of one variable
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1.2 Introduction to Differentiation

Given a function of one variable y = f(x), the “derivative of y with respect to x” can be
written as:

dy

dx
or y′

This yields the gradient (slope) of the function, which is equivalent to its rate of change as
x changes.

The derivative of y with respect to time t, may also be expressed as ẏ.
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1.2.1 Standard rules of differentiation

For constants a and n:

y = axn =⇒ dy

dx
= anxn−1

y = ax =⇒ dy

dx
= a

y = a =⇒ dy

dx
= 0

y = ex =⇒ dy

dx
= ex

y = sin(x) =⇒ dy

dx
= cos(x)

y = cos(x) =⇒ dy

dx
= − sin(x)

y = ln(x) =⇒ dy

dx
=

1

x

Example

Differentiate:

y = 5x2, y = −3x10

y = 9x, y = 2
√
x

y = − 4

x3
, y = 100x0.5
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1.2.2 Linearity

Given two functions f and g,

y = f(x)± g(x) =⇒ dy

dx
=

df

dx
± dg

dx
= f ′(x)± g′(x)

If a is a constant, then:

y = af(x) =⇒ dy

dx
= a

df

dx
= af ′(x)

1.2.3 Gradient of a curve

Differentiating the formula for a curve yields a formula for the gradient of that curve at any
point. In most cases, this gradient is dependent on x. Therefore, to find the gradient of a
curve at a particular point, differentiate first and then substitute in the particular value of
x to the formula obtained for dy

dx
.

Example:

Find the gradient of the curve y = x2 + 4x− 7 at the (2, 5).

Solution:

y′(x) = 2x+ 4

y′(x = 2) = 2(2) + 4 = 8
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1.3 The Product Rule

Suppose f(x) is the product of two functions (i.e. the result of multiplying them together):

f(x) = u(x) · v(x)

Then the derivative is given by the Product Rule.

Product rule:

df(x)

dx
= v(x) · du(x)

dx
+ u(x) · dv(x)

dx

This may also be written as:

(uv)′ = vu′ + uv′

Example:

Differentiate y = x2 sin(x)

Solution:

Let u = x2 and v = sin(x)

Then

u′ = 2x and v′ = cos(x)

Thus

y′ = (uv)′ = u · v′ + u′ · v

= x2 cos(x) + 2x sin(x)
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Example:

Find dy
dx

when y = ex cos(x)

Solution:

Let u = ex and v = cos(x)

Then

u′ = ex and v′ = − sin(x)

Thus

y′ = (uv)′ = u · v′ + u′ · v

= ex(− sin(x)) + ex cos(x)

= ex
(

cos(x)− sin(x)
)
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1.4 The Chain Rule

A composite function is defined as a “function of a function”. For example, h(x) is a
composite function when:

h(x) = g(f(x))

where f and g are functions. In this case, to calculate the output of h, x is the input to
function f and the output is then taken as the input for function g.

Examples of composite functions:

y = sin(3x+ 1), y = ex
2+2

y = (2x− 5)4, y = cos(sin(x))

To differentiate composite functions, we use the Chain Rule.

If y = g(f(x)), then we write u = f(x) and so y = g(u). Then. . .

Chain rule:

dy

dx
=

dy

du
· du

dx

Always state final answers in terms of the original variables - in this case, x not u.

Example:

If y = sin(3t2 + 5), find y′

Solution:

Let u = 3t2 + 5 then y = sin(u)

Then
du

dt
= 6t and

dy

du
= cos(u)

Thus
dy

dt
=

dy

du
· du

dt
= cos(u) · (6t)

= 6t cos
(
3t2 + 5

)
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Example:

Find dy
dx

when y = ex
2+3x−1

Solution:

Let u = x2 + 3x− 1 then y = eu

Then
du

dx
= 2x+ 3 and

dy

du
= eu

Thus

dy

dx
=

dy

du
· du

dx
= eu ·(2x+ 3)

= (2x+ 3) ex
2+3x−1

By applying the chain rule, we can derive some additional standard rules.

If a is a constant,

y = sin(ax) =⇒ dy

dx
= a cos(ax)

y = cos(ax) =⇒ dy

dx
= −a sin(ax)

y = tan(ax) =⇒ dy

dx
= a sec2(ax)

y = eax =⇒ dy

dx
= a eax
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1.5 Second-order Derivatives

Differentiating a function y = f(x) with respect to x yields the “first derivative” of y,
denoted by y′, f ′(x), or dy

dx
.

Differentiating the result (with respect to x) yields the “second derivative” of y, denoted
by:

d2y

dx2
or y′′ or f ′′(x)

This tells us the rate at which the gradient of y changes.

Examples

(1) f(x) = 5x3 =⇒ f ′(x) = 15x2 =⇒ f ′′(x) = 30x

(2) f(x) = 6 ex =⇒ f ′(x) = 6 ex =⇒ f ′′(x) = 6 ex
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1.6 Physical applications of differentiation as “rate of change”:

Suppose an object moves in a straight line with its position along the line x(t).

• Velocity is the rate of change of position, so:

v(t) =
dx

dt

• Acceleration is the rate of change of velocity, so:

a(t) =
dv

dt

Therefore we also note that

a(t) =
d

dt

(
dx

dt

)
=

d2x

dt2

Example

A car moves in a straight line from A to B. At any time t (in seconds), the displacement of
the car from A is given by:

x(t) = t3 + 2t2 metres

What is the acceleration of the car after 4s?

Solution:

a(t) =
d2

dt2
(
t3 + 2t2

)
=

d

dt

(
3t2 + 4t

)
= 6t+ 4

∴ a(t = 4) = 6(4) + 4 = 28 ms−2
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1.7 Maximising and Minimising Functions

We may want to find extreme values of a function f in a range of x. This occurs where the
gradient is zero (or at boundaries).

Stationary Points: If f ′(x) = 0 when x = a for some value a, then a is called a
stationary point or turning point of the function f .

There are three types:

To find the maximum and minimum points of a curve y = f(x):

1. Calculate the first derivative dy
dx

.

2. Solve theequation dy
dx

= 0forx. This tellsus the locationofpointswhere thegradient
is zero (i.e. the stationary points).

3. Calculate the second derivative d2y
dx2 .

4. Determine the sign of d2y
dx2 at each stationary point, and apply the “Second Derivative

Test”:

d2y

dx2
> 0 =⇒ local minimum

d2y

dx2
< 0 =⇒ local maximum

d2y

dx2
= 0 =⇒ no conclusion
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Example:

Find and classify the stationary point(s) of

y = x2 + 4x− 1

Solution:

Obtaining the first derivative:

y′ = 2x+ 4

Finding the values of xwhere gradient is zero:

y′ = 0 =⇒ 2x+ 4 = 0 =⇒ x = −2

Then obtaining the y-coordinate:

y(x = −2) = (−2)2 + 4(−2)− 1 = −5

And applying the second derivative test:

y′′ = 2 =⇒ y′′(x = −2) = 2 > 0

Hence, (−2,−5) is a maximum turning point.
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1.8 MATLAB

Differentiation uses the diff command, which requires two arguments: the function to be
differentiated, and then the symbolic variable you are differentiating with respect to. For
example:

d

dx

(
sin(2x)

)
syms x

diff( sin(2*x), x )

This can be combined with the solve function to determine the location of stationary
points:

syms x

solve( diff( sin(2*x), x ) == 0, x )

But note that, despite there being an infinite set of solutions, MATLAB will only return
the “simplest” one.
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2 Partial differentiation

2.1 Functions of two variables

Previously, we considered y = f(x), where y is a function of (i.e. its value depends on)
only one variable x. This can be represented in two dimensions by a curve.

However, manyphysicalmodelling situations involvea functionofmultiplevariables. This
can be written as:

z = f(x, y)

and represented as a surface plot in three dimensions, where the height z depends on both
the x and y co-ordinates.

Examples:

z = x3 + 2y − 1, f(h, t) = 3 sin(h+ t)
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Physical Examples:

• The volume V of a cylinder is given by V = πr2h. The volume will change if either
the radius r or the height h is changed. The formula may be stated mathematically
as V = f(r, h), which means that “V is some function of both r and h”.

• Time period of oscillation of a massm on a spring:

T = 2

√
m

k

i.e. T = f(m, k), wherem is the mass and k the spring constant.

• Pressure of an ideal gas:

p =
mRT

V

i.e. p = f(T, V ), where T is the temperature and V the volume.
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2.2 Introduction to Partial Differentiation

To think about the gradient of this 3-d surface, or the rate of change of z as both x and
y potentially change simultaneously, we need to develop our theory of differentiation to
include partial differentiation.

A “curly dee”, ∂, is used to distinguish between partial and ordinary differentiation.
Hence if V = πr2h, then ∂V

∂r
means the partial derivative of V with respect to r, and ∂V

∂h

means the partial derivative of V w.r.t. h.

When differentiating a function of two or more variables, the variable with which the
function is being differentiated wrt is differentiated, while the other variables are held
fixed as if they were constants.

Example 1: Determine ∂V
∂r

if V = πr2h.

Since we are differentiating wrt r, we hold h constant:

∂V

∂r
=

∂

∂r

(
πr2h

)
= πh

∂

∂r

(
r2
)

= 2πrh

Example 2: Determine ∂V
∂h

if V = πr2h.

Since this time we are differentiating wrt h, we hold r constant:

∂V

∂h
=

∂

∂h

(
πr2h

)
= πr2

∂

∂h

(
h
)

= πr2

Example 3: If z(x, y) = 5x4 + 2x3y2 − 3y, find ∂z
∂x

and ∂z
∂y

.

To find ∂z
∂x

, we treat y as a constant:

∂z

∂x
=

∂

∂x

(
5x4 + 2x3y2 − 3y

)
= 20x3 + 6x2y2

To find ∂z
∂y

, we treat x as a constant:

∂z

∂y
=

∂

∂y

(
5x4 + 2x3y2 − 3y

)
= 4x3y − 3
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Example 4: If y(x, t) = 4 sin(3x) cos(2t), find ∂y
∂x

and ∂y
∂t

.

To find ∂y
∂x

, we treat t as a constant:

∂y

∂x
=

∂

∂x

(
4 sin(3x) cos(2t)

)
= 12 cos(3x) cos(2t)

To find ∂y
∂t

, we treat x as a constant:

∂y

∂t
=

∂

∂t

(
4 sin(3x) cos(2t)

)
= −8 sin(3x) sin(2t)

Example 5: If f(x, y, z) = −7x e−3xy +8x2z3, find ∂f
∂x

, ∂f
∂y

, and ∂f
∂z

.

To find ∂f
∂x

, we treat y and z as constants:

∂f

∂x
=

∂

∂x

(
− 7x e−3xy +8x2z3

)
= −7x× (−3y) e−3xy + e−3xy×(−7) + 16xz3

= 21xy e−3xy−7 e−3xy +16xz3

where we have used the product rule in the first step and term.

To find ∂f
∂y

, we treat x and z as constants:

∂f

∂y
=

∂

∂y

(
− 7x e−3xy +8x2z3

)
= 21x2 e−3xy

To find ∂f
∂z

, we treat x and y as constants:

∂f

∂z
=

∂

∂z

(
− 7x e−3xy +8x2z3

)
= 24x2z2
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2.3 Second order Partial derivatives

As with ordinary differentiation, where a differential coefficient may be differentiated
again, a partial derivative may be differentiated partially again to give higher order partial
derivatives.

Example notation:

If f = f(x, y) is a function of two variables, then:

• Differentiating ∂f
∂x

wrt x gives: ∂
∂x

(
∂f
∂x

)
= ∂2f

∂x2

• Differentiating ∂f
∂y

wrt y gives: ∂
∂y

(
∂f
∂y

)
= ∂2f

∂y2

• Differentiating ∂f
∂x

wrt y gives: ∂
∂y

(
∂f
∂x

)
= ∂2f

∂y∂x

• Differentiating ∂f
∂y

wrt x gives: ∂
∂x

(
∂f
∂y

)
= ∂2f

∂x∂y

It is important to note that these final two are equivalent. So there is no difference between
partially differentiating f by x and then by y, than if instead you partially differentiated
f by y and then by x:

∂2f

∂x∂y
=

∂2f

∂y∂x

This is true regardless of what f is.
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Example 6: If z(x, y) = 4x2y3 − 2x3 + 7y2, then find ∂2z
∂x2 , ∂2z

∂y2
, ∂2z
∂y∂x

and ∂2z
∂x∂y

.

To find ∂2z
∂x2 , first determine the first partial derivative wrt x:

∂z

∂x
= 8xy3 − 6x2

and then the second partial derivative wrt x can be determined:

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

∂

∂x

(
8xy3 − 6x2

)
= 8y3 − 12x

To find ∂2z
∂y2

, first determine the first partial derivative wrt y:

∂z

∂y
= 12x2y2 + 14y

and then the second partial derivative wrt y can be determined:

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
=

∂

∂y

(
12x2y2 + 14y

)
= 24x2y + 14

Then to determine ∂2z
∂y∂x

:

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y

(
8xy3 − 6x2

)
= 24xy2

and finally ∂2z
∂x∂y

:

∂2z

∂x∂y
=

∂

∂x

(
12x2y2 + 14y

)
= 24xy2

so we confirm that

∂2f

∂x∂y
=

∂2f

∂y∂x
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2.4 Propagation of Uncertainty

Earlier inthismodule, we learnedhowtoaddorsubtract independentnormallydistributed
variables. In particular, if a new variable is created by adding or subtracting two indepen-
dent random variables, then it’s variance is the sum of the variances of the two constituent
variables.

Using partial differentiation, we can extend this idea to much more complex compos-
ite variables.

In general, if y = f(x1, x2, . . . , xn), where x1, . . . , xn are independent random variables
with variances σ2

x1
, . . . , σ2

xn
, then the variance of y is given by:

σ2
y =

(
∂y

∂x1

)2

σ2
x1

+ · · ·+
(
∂y

∂xn

)2

σ2
xn

Evaluated at the mean values of x1, . . . , xn.

Example 1: Given that x and y are independent random variables with mean µx = 0
and µy = 3, and z = 3x+ sin(x) + y2, determine a formula for the variance of z.

∂z

∂x
= 3 + cos(x)

∂z

∂y
= 2y

Thus,

σ2
z = (3 + cos(µx))2σ2

x + (2µy)
2σ2

y

= (cos2(µx) + 6 cos(µx) + 9)σ2
x + (4µ2

y)σ
2
y

= (cos2(0) + 6 cos(0) + 9)σ2
x + (4(3)2)σ2

y

= 16σ2
x + 36σ2

y

Example 2: Show that this theory agrees with our previous result that the sum of two
independent random variables has a variance that is the sum of their variances.

Letx1 and x2 be independent random variables and let y be such that y = x1 + x2.

Then,

∂y

∂x1
= 1

∂y

∂x2
= 1
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And so aplying the variance formula:

σ2
y = (1)2σ2

x1
+ (1)2σ2

x2

= σ2
x1

+ σ2
x2

So we find that we do indeed recover the previous result.

Example 3: A company manufactures bollards for pedestrian areas by fitting a partially-
sheared sphere of radius tcm and volume 5

4
πt3 to a cylinder of height hcm and radius rcm.

Thus, the cylinder has volume given by πr2h and the overall volume of the bollard is:

V = πr2h+
5

4
πt3

The components are manufactured with the variables h, r and t obeying approximately
normal distributions with mean: h = 50cm, r = 6cm and t = 10cm, and variances:

σ2
h = 4cm2 σ2

r = 0.5cm2 σ2
t = 1cm2

What is the mean and variance of the volume of the bollards?

The mean is simply:

µV = πµ2
rµh +

5

4
πµ3

t

= π(6)2(50) +
5

4
π(10)3

= 9581.85759 . . .

≈ 9580cm3

Calculating the partial derivatives:

∂V

∂r
= 2πrh

∂V

∂h
= πr2

∂V

∂t
=

15

4
πt2

Thus the variance of the volume is given by:

σ2
V = (2πµrµh)2σ2

r + (πµ2
r)

2σ2
h +

(
15

4
πµ2

t

)2

σ2
t

= 4π2µ2
rµ

2
hσ

2
r + π2µ4

rσ
2
h +

225

16
π2µ4

tσ
2
t

= 4π2(6)2(50)2(0.5) + π2(6)4(4) +
225

16
π2(10)4(1)

= 2327341.544 . . .

≈ 2, 330, 000cm6
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As the variables are normally-distributed, we can then determine boundaries for 68% of
the bollards produced - as they will lie within one standard deviation of the mean for a
normally-distributed variable.

The standard deviation of the volume is:

σV =
√

2327341.544 = 1525.563 · · · ≈ 1530cm3

And so 68% of all bollards produced will have a volume in the range:

9580± 1530cm3
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2.5 Rates of change for multivariate functions

Sometimes it is necessary to solve problems in which different quantities have different
rates of change - for this we make use of first order partial derivatives.

Second order partial derivatives are used in the solution of partial differential equations,
for example in wave theory, thermodynamics (entropy, continuity theorem) and fluid me-
chanics. They are also used in optimisation problems.

In the previous lecture partial differentiation was introduced for the case where only one
variable changes at a time and the other variables are kept constant. In practice, variables
may all be changing at the same time.

It can be shown that the rate of change of z wrt t is given by:

dz

dt
=
∂z

∂u

du

dt
+
∂z

∂v

dv

dt
+
∂z

∂w

dw

dt
+ . . .

where u, v, w, . . . are variables that z depends on, and we have to consider how each of
their rates of change contributes to the rate at which z changes.

For example: if z = f(x, y) and x and y are functions of t ( that is, x = x(t) and y = y(t))
then z is ultimately a function of t only, and:

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

If w = f(x, y, z) and x = x(t), y = y(t) and z = z(t) then w is ultimately a function of t
only, and:

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
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Example 1: The height of a right circular cone is increasing at 3mms−1 and its radius is
decreasing at 2mms−1. Determine, correct to 3 significant figures, the rate at which the
volume is changing (in cm3s−1) when the height is 3.2 cm and the radius is 1.5 cm.

The volume of a right circular cone is given by V = 1
3
πr2h. From above, as this for-

mula for V depends on two variables, r and h, the rate of change of volume is:

dV

dt
=
∂V

∂r

dr

dt
+
∂V

∂h

dh

dt

Obtaining the partial derivatives of V wrt r and h:

∂V

∂r
=

2

3
πrh, and

∂V

∂h
=

1

3
πr2

Since the height is increasing at 3mms−1, i.e. 0.3cm/s, then:

dh

dt
= +0.3

and since the radius is decreasing at 2mms−1, i.e. 0.2cm/s, then:

dr

dt
= −0.2

Substituting both of these into the equation gives:

dV

dt
=

∂V

∂r

dr

dt
+
∂V

∂h

dh

dt

=

(
2

3
πrh

)
(−0.2) +

(
1

3
πr2
)

(0.3)

=
−0.4

3
πrh+ 0.1πr2

Then to find the rate of change of volume specifically when h = 3.2cm and r = 1.5cm:

dV

dt
=
−0.4

3
πrh+ 0.1πr2

=
−0.4

3
π × 1.5× 3.2 + 0.1π(1.5)2

= −1.304cm3s−1

So the volume is decreasing at a rate of 1.30cm3s−1 at that particular moment.
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Example 2: A rectangular box has sides of length x cm, y cm and z cm. Sides x and z are
expanding at rates of 3mms−1 and 5mms−1, respectively and side y is contracting at a rate
of 2mms−1. Determine the rateof changeof volumewhenx is 3 cm, y is 1.5 cmandz is 6 cm.

The volume of a cuboid is given by V = xyz. Hence, the rate of change of volume is
given by the formula:

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt

Partially differentiating V with respect to x, y and z then:

∂V

∂x
= yz,

∂V

∂y
= xz,

∂V

∂z
= xy

We also know that the rates of change of x, y and z are:

dx

dt
= 0.3,

dy

dt
= −0.2,

dz

dt
= 0.5

Substituting all of this and the required values of x, y and z into the formula for rate of
change of volume yields:

dV

dt
=

∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt

= (yz)(0.3) + (xz)(−0.2) + (xy)(0.5)

= (1.5× 6)(0.3) + (3× 6)(−0.2) + (3× 1.5)(0.5)

= 1.35cm3s−1
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2.6 Maximising and minimising functions of two variables

Recall that we can think of a function of two variables as a surface (rather than a curve).
Maximum and minimum heights can occur at stationary points on the surface, where the
gradient is zero in all directions and the surface is perfectly flat.

There are three kinds:

(a) Maximum (b) Minimum (c) Saddle Point

In order to determine where on a surface stationary points occur and whether these
points are maxima, minima or saddle points, we follow the procedure below:

Given a multivariate function z = f(x, y):

1. Determine ∂z
∂x

and ∂z
∂y

2. To determine the location of the stationary points, let ∂z
∂x

= 0 and ∂z
∂y

= 0. A
stationary point is a point on the surface where both slopes in the x and y direction
are zero.

3. Solve the pair of simultaneous equations ∂z
∂x

= 0 and ∂z
∂y

= 0 forx and y. This gives us

the co-ordinates of the stationary points. (Note that there may be more than one.)

4. Determine the second partial derivatives: ∂2z
∂x2 , ∂2z

∂y2
, and ∂2z

∂y∂x

5. For each of the co-ordinates of the stationary points, substitute the values of x and
y into the equation:

∆ =

(
∂2z

∂y∂x

)2

−
(
∂2z

∂x2

)(
∂2z

∂y2

)
and evaluate.

6. Apply the following second derivative test. If:
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• ∆ > 0, then the stationary point is a saddle point.

• ∆ < 0 and ∂2z
∂x2 < 0, then the stationary point is a maximum point.

• ∆ < 0 and ∂2z
∂x2 > 0, then the stationary point is a minimum point.

We could replace ∂2z
∂x2 with ∂2z

∂y2
in this test, it doesn’t matter which is used.

Example: Find and classify the stationary points of the surface:

f(x, y) = x2 + y2 − 2x+ 4y + 8

1. First determining ∂f
∂x

and ∂f
∂y

:

∂f

∂x
= 2x− 2 and

∂f

∂y
= 2y + 4

2. Set ∂f
∂x

= 0 and ∂f
∂y

= 0:

2x− 2 = 0 and 2y + 4 = 0

3. Solving these for x and y:

x = 1 and y = −2

So there is only one stationary point in this case, which is located at (1,−2).

4. Determine the second partial derivatives:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x
(2x− 2) = 2

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y
(2y + 4) = 2

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x
(2y + 4) = 0

5. Substituting these values into the formula for ∆ and evaluating:

∆ =

(
∂2z

∂y∂x

)2

−
(
∂2z

∂x2

)(
∂2z

∂y2

)
= 02 − 2× 2 = −4

Thus, since at (1,−2) we have:

∆ = −4 < 0 and
∂2f

∂x2
> 0

then this is a minimum stationary point.
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2.7 MATLAB

Partial differentiation is actually the same as regular differentiation in MATLAB, using
the diff command with two arguments. The only difference is that you will need to
remember to declare all variables as symobolic first. For example:

∂

∂x

(
xy2 + 3y sin(x)

)
syms x y

diff( x*y*y+3*y*sin(x) , x )
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3 Revision

So, what should I be able to do at this point in the course?

• Apply the standard techniques of differential calculus:

– Differentiate simple functions using the table of standard derivatives.

– Use the chain rule to differentiate functions of functions.

– Usetheproduct (and/orquotient) rule todifferentiate two functionsmultiplied
together.

• Determine the rate of change of a univariate function (i.e. a function of only one
variable).

• Locate the maxima and minima of a function by locating the stationary points, and
apply the second-derivative test to classify them.

• Calculate the partial derivatives of a function.

• Calculate the second-order partial derivatives of a function.

• Determine the rate of change of a function of two or three variables.

• Calculate the maxima and minima of a function of two variables.

• Calculate the propagation of uncertainty for a multi-variate function.

• Check your results for regular and partial differentiation using MATLAB.

• Plot curves to visualise your results in MATLAB.

Note that for the standard techniques of differentiation, including the product and chain
rule, there are numerous extra videos provided to aid your self-guided revision of this topic.
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