MMaD: Lecture 12 handout

Fourier transform

For a piecewise-continuous periodic function f(t), the inverse Fourier transform may be written:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

and the (forward) Fourier transform is:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Fourier transform of discrete data

If we have a set of N data points $\{f_n\}$ observed at time $\{t_n\}$, the discrete Fourier transform takes us to the frequency domain:

$$(t_n, f_n) \xrightarrow{Fourier \ transform} (\omega_k, F_k)$$

Some notation has a different meaning here to other parts of the module:

- t_n are the observation times of our data.
- f_n are the corresponding strengths of the signal observed at time t_n .
- ω_k here refers to frequencies in hertz (not angular frequency).
- F_k is the magnitude of corresponding frequency ω_k in the Fourier transform.
- T will refer to the total time interval over which the signal was observed (not the period).
- N is the number of samples that were recorded in this time T.

There are N integer values of k, ranging between $-\frac{N}{2}$ and $\frac{N-1}{2}$

For each value of k, there is a specific frequency ω_k , and an associated complex number F_k .

This sequence of numbers F_k , which are independent of the observation time t_n , are the Fourier transform of the sequence $\{f_n\}$.

They are determined by:

$$F_k = \sum_{n=0}^{N-1} f_n e^{-j2\pi nk/N}$$

Using MATLAB or Excel for discrete Fourier transforms

- We will conduct examples of both of these in the tutorial.
- See the MATLAB live script Lecture 11_Discrete Fourier Transform Example.mlx in the lecture material folder for the workings of the example shown in the lecture slides.
- The main new command for MATLAB is the "fast fourier transform" of the data: F = fft(f)

MATLAB procedure

Given a set of N time-dependent data points (t_n, f_n) recorded over a time-period T:

1. Take the Fourier transform of the dependent data (the values of f):

2. Take the **magnitudes** of these complex numbers:

3. Calculate the frequency spacing (in Hz) according to:

$$s = \frac{1}{T}$$

- 4. Plot the frequency spectrum of (N/2) 1 values:
 - On the x-axis, we want (N/2) 1 frequencies that start at 0 and increase by the frequency spacing.
 - On the y-axis, we want the first (N/2) 1 values from the magnitude m.

Nyquist frequency

The maximum frequency we can resolve for a discrete data sample is given by:

$$\frac{N}{2T}$$

where T is the total period of time we have collected data over.