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Aims for this week

o Briefly revise the integration of constants, sine and cosine
functions.

@ Learn to identify odd and even functions.

@ Learn how to calculate the formulae for all Fourier coefficients
of a periodic signal, by integrating manually (rather than
using MATLAB).
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Recap |: standard integration

If « is any real constant, then the following integrals hold:

sin(at) dt = — cos(at)

/
/cos(at) dt = %sin(at)
/
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Prerequisite: Odd and Even functions

Functions can be classified as:

e odd
e even
@ both (in some very trivial cases, like f(x) = 0)

@ neither

Being able to recognise an odd or even function will enable us to
take shortcuts when calculating Fourier Series.
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Odd functions

Odd Functions
An odd function is one where f(—x) = —f(x).

The graph has rotational symmetry of 180° about the origin.

Example:
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Even functions

Even Functions

An even function is one where f(—x) = f(x).

The graph has reflective symmetry about the vertical axis.

Example:
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Odd and Even functions

@ Examples of odd functions include:
x, x3, x% and sin(mx)

@ Examples of even functions include:

17, x?, x* and cos(mx)

@ Which of the functions below are odd, even, or neither?
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Application to Fourier Series

Fourier series of odd or even functions

If we have functions that are purely odd, then we can eliminate ag
and all the a, terms.

If we have functions that are purely even, then we can eliminate
all the by terms.

A useful consequence of cosine being even, and sine being odd,
is that for any value of x:

cos(—x) = cos(x) and  sin(—x) = —sin(x)
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Recap Il: Fourier Series

Any periodic function f(t) with angular frequency w can be written
as a (potentially infinite) combination of sine and cosine waves:

Fourier Series for a general periodic function

1 > il
f(t) = Zao + Z ay cos(kwt) + Z by sin(kwt)

2
k=1 k=1

We need to find the values of the coefficients (numbers) ag, a1, a2,
...and b1, b2, b3,

Fourier analysis consists of determining these constants by the
following integrals. ..
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Fourier coefficients

Integral formulae for Fourier coefficients
2 T
= — f(t) dt
w2 [ 0

= —/ ) cos(kwt) dt

2 T
b = —/ £(£) sin(kwt) dt
T Jo
where w is the angular frequency of f(t).
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Example: Square Wave

A common example is this square wave, given by:
17 for F<t<3
f(t) =
; 3
0 if Z<t<F

And it repeats with period 27.

20 [ 7

f(t) [arb. units]

-15 -10 -5 0 5 10 15
Time [arb.units]
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Example: Square Wave

Last week, we saw how to calculate the first few coefficients using
MATLAB. In this way we could find that:

34
a = —

m
dy = 0
a3 =

This would allow us to obtain an approximation to the Fourier
series, called the Fourier partial sum.

However, by using the integral formulae for general k, we can
calculate the infinite Fourier series.
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Example: Square Wave

As the period is T = 27, the angular frequency is therefore:

_27r_27r
T 2

w =

Note that this is a piecewise function, meaning that it behaves in
two different ways during different regions of a single cycle:

17 for F<t<3

f(t)= i

0 for <t< S

SIE

We will therefore have to split the integrals for ag, ax and by up
and consider these different regions separately (multiple integrals).
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Example: Square Wave

We previously noted that we can choose any range for our integrals
as long as they span a width equal to the period, which in this case
is T =2m.

For this example, rather than integrating over 0 < t < 27, let's
integrate over 5 <t < 37” so that they must be split into just

two, rather than three, integrals each time.

So for example, instead of:

2 2
a0 = A f(t)dt

Let's calculate: ,
a0 = o f(t)dt
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Example: Square Wave

Calculating the DC level first:

a0

2 3#/2

— dt Then splitting the range in two:
2T 7r/2

1 3r/2

— t)dt+ — / f(t)dt

@ /2

N

17 dt as the integral of 0 is simply 0!

| =

3r/2
/ 17dt + — / 0dt
w/2
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Example: Square Wave

So there is only one integral we actually need to evaluate here:

1 /2
a = / 17 dt
T J—n/2

/2
= 1 [171‘]

—7/2
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Example: Square Wave

So we have found that:

The DC level is then:

This is the average value of the function over one cycle, which
can be an easy alternative method to use to find the DC level.
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Example: Square Wave

Next, we obtain the formula for a general ay:

ak

2 3r/2
— f(t)cos(kt) dt
r |, (costi)
1 w/2 1 3m/2
/ 17 cos(kt) dt+/ 0 - cos(kt) dt
T J—n/2 T Jr/2
w/2

17[1 sin(kt)]

k —7/2

7 (4) —on ()

Dr Gavin M Abernethy Fourier Series (Part II)



Example: Square Wave

But earlier we saw that sine is an odd function, and so:

Thus,

Ak
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Example: Square Wave

If k is even, then sin (&%) = 0, so ax = 0 for any even k.

If k is odd,
k=1 = <k27r> =
k=3 = (k27r> =
k=5 = <k27r> =
So this will give a pattern of 0,1,0,—1,..., multiplied by i’i
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Example: Square Wave

Fortunately by is easier:
2 37/2

by = 5 o f(t)sin(kt) dt

1 /2 3m/2

- = 7sin(kt) dt + 1 0-sin(kt) dt
1

T J—x/2 ™ Jr)2

. /2
= 17[1cos(kt)]
| k S

- Hel5) ()
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Example: Square Wave

But earlier we saw that cosine is an even function, and so:

Thus,

COSs —ki = COS ki
2 ) 2

=0 for any integer k

Dr Gavin M Abernethy Fourier Series (Part II)



Example: Square Wave

We have obtained formulae for all the Fourier coefficients for this
square wave. The general formula of the Fourier series:

1 > il
f(t) = 5a0 + Z ay cos(kwt) + Z by sin(kwt)

2
k=1 k=1

Will become in this specific case:

17 =34 km
f(t) = —+ Z — sin <> cos(kt)
2 — km 2
17 34
= 5t (t)——ﬂcos(3t)—|——ﬂcos(5t)—...
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We have carried out a Fourier analysis of the square wave.
We saw that it consists only of a, terms.
This is because the square wave we drew was an even function (it

has reflective symmetry about the y-axis), so we could have
realised by = 0 (for all k) right at the start!

20 [

f(t) [arb. units]
S

Time [arb.units]
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Exercise

A periodic waveform is given by:
=2 for —wT<t< -3
f(t)=4 0 for F<t<3

2 if g<t<7r

and this function repeats every 27, which is denoted by
f(t) = f(t+2m)

@ Sketch this function over at least three periods.
@ Determine the Fourier Series of f(t).
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