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Aims for this week

Learn how to apply the discrete Fourier transform to
sampled data.

Interpret the resulting frequency spectrum to recover the
continuous signal being sampled.
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The Fourier Transform

The forward Fourier transform F (ω) is a special operation that
turns a time-signal f (t) into a frequency spectrum:

Fourier transforms

The (forward) Fourier transform:

F (ω) =

∫ ∞
−∞

f (t) e−jωt dt

and the (inverse) Fourier transform:

f (t) =
1

2π

∫ ∞
−∞

F (ω) ejωt dω
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Application: bone density

This example involves analysing the vibrations of a patient’s bones
in order to detect osteoporosis.

When we detect sounds, we are measuring the amplitude of the
displacement of air over time. The density of bones affects the
sound they produce when vibrating. In an experiment researchers
subject the bones to vibration, and record the response.
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Bone density application

The amplitudes of the vibrations over time between healthy and
affected samples are hard to distinguish:
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Bone density application

But the Fourier transform tells us what frequencies are present in
the sound of the vibrating bones, and with what amplitude.
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Fourier Transform of Discrete Data

The data in the top figure
is not actually continuous,
but consists of a set of
points (discrete data).
Collecting any real data
can only ever give discrete
samples at every minute,
second, cm, etc.

How do we find the
Fourier transform of
discrete data?
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Fourier Transform of Discrete Data

If we have a set of N data points
{
fn
}

observed at time
{
tn
}

, the
discrete Fourier transform takes us from the time-domain (where
we have the strength of the signal over time) to the frequency
domain (where we have the relative importance of different
frequencies):

(
tn, fn

) Fourier transform−−−−−−−−−−−→
(
ωk ,Fk

)
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Notation

Note that some notation has a different meaning here to other
parts of the module:

tn are the observation times of our data.

fn are the corresponding strengths of the signal observed at
time tn.

ωk here refers to frequencies in hertz (not angular frequency).

Fk is the magnitude of corresponding frequency ωk in the
Fourier transform.

T will refer to the total time interval over which the signal
was observed.

N is the number of samples taken in time T .
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Fourier Transform of Discrete Data

There are N integer values of k , ranging between −N
2 and N−1

2

For each value of k , there is a specific frequency ωk , and
associated with it a complex number Fk .

This sequence of numbers Fk , which are independent of the
observation time tn, are the Fourier transform of the sequence {fn}.

They are determined by:

Fk =
N−1∑
n=0

fn e−j2πnk/N

Dr Gavin M Abernethy The Fourier Transform for Discrete Data



The y -axis (Fk)

This can be done by an in-built MATLAB function.
“fft” stands for the “Fast Fourier Transform” algorithm.

For example, to take the Fourier Transform of a sequence 1, 2, 1, 0:

x = [ 1 2 1 0 ];

F = fft(x);

And we get the result F = { 4, −2j , 0, 2j }.

To determine what frequencies these values correspond to, we
consider at what times the original data points were observed.
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The x-axis (ωk)

The frequencies ωk start at zero, and increase by the frequency
spacing:

∆f =
sr
N

=
1

T

where sr is the sampling rate (number of samples per second).

The maximum frequency on the x-axis is the Nyquist frequency:

N

2T

we will discuss this more later.
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Example

This signal is sampled 256 times over 10 seconds:
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Example: inspecting the data

As there are N = 256 samples over T = 10 seconds, the sampling
rate is sr = 256/10 = 25.6s−1

From looking at the graph, there appears to be an oscillation with
period of about 1 s and hence a 1 Hz frequency.

But is that everything?
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Example: MATLAB procedure

Take the Fourier transform of the dependent data (the values of
f ), and then we want the magnitudes of these complex numbers:

F = fft(f) This takes the Fourier transform

m = abs(F) ‘‘abs’’ for absolute value

Plot the frequency spectrum of (N/2)− 1 = 127 values:

On the x-axis, we want 127 frequencies that start at 0 and
increase by the frequency spacing:

s =
1

T
=

1

10
= 0.1 Hz

On the y -axis, we want the first 127 values of magnitude m.
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Example: results

Plotting this results in the frequency spectrum:

We can now see two peaks, where there are important frequencies
present in the signal:

One at 1 Hz , as expected, with magnitude 127.5.

Another at 3.5 Hz , with magnitude 12.06.
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Example: results

By scaling the two sine waves appropriately, we can then
reconstruct the actual waveform that this data was sampled from:

f (t) =
A

127.50

(
127.50 sin(2π × 1t) + 12.06 sin(2π × 3.5t)

)
where A = 1.0278 is the estimated amplitude of the “main”
oscillation that we can measure from the scatter graph.
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Example:

Open the worksheet:

Lecture12_DiscreteFourierTransformExample.mlx
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The Nyquist Frequency

The maximum frequency we can resolve (detect) is related to
the total amount of time T that we have sampled the signal over.

This is known as the Nyquist frequency:

N

2T

The point is that high frequency signals cannot be detected if we
do not sample with sufficient frequency. For example, if you only
sampled a regular sine wave sin(t) every 2π, you would appear to
be observing a constant signal!
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The Nyquist Frequency

To explain this concept in another context, imagine you wanted to
know the patterns governing how many people use this classroom
at any given time.

One big pattern will be that there a lot of people in the room
during the daytime, but very few at night.

How often must you look into the room to detect this pattern?

If you only sample the usage once per day at 10am, this pattern
will be impossible to detect, it is “between” the data. The Nyquist
frequency quantifies this idea for Fourier analysis of sampled data.

Dr Gavin M Abernethy The Fourier Transform for Discrete Data



Example: Nyquist Frequency

Returning to our example:

In this case the Nyquist frequency is:

N

2T
=

256

2× 10
= 12.8 Hz

so this is the upper limit of the x-axis on the frequency spectrum.

Dr Gavin M Abernethy The Fourier Transform for Discrete Data



Summary

Fourier transforms produce the frequency spectrum of a signal,
which shows us what frequencies are present in a potentially
complicated-looking waveform.

Real data usually consists of discrete samples of the continuous
function. To deal with this, and approximate the “true” continuous
Fourier transform, we can use the discrete Fourier transform.

We will be practicing this in both EXCEL and MATLAB in the
final tutorial.
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Real Applications of Fourier Analysis

If earthquake vibrations can be separated into vibrations of
different speeds and amplitudes, buildings can be designed to avoid
interacting with the strongest ones.

If sound waves can be separated into bass and treble frequencies,
we can boost the parts we care about, and hide the ones we don’t.
The crackle of random noise can be removed.

If computer data can be represented with oscillating patterns,
perhaps the least-important ones can be ignored. This can
drastically shrink file sizes (and why JPEG and MP3 files are much
smaller than raw .bmp or .wav files).
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