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1 Introduction to Matrices

1.1 Definitions and Order

• Definition: A matrix is a rectangular array of numbers or letters. We use either
square or round brackets and a capital letter to denote them. The ordering of
elements matters.

• A vector is a matrix with only one column (i.e. a one-dimensional array of data), or
only one row (a “row vector”).

• Order of a matrix: the size and shape, described by the number of rows and then
the number of columns.

Example 1.1.
3 0

1 −2

−4 5

 has order 3× 2

(
2

−5

)
This is a 2× 1 matrix. It is also a vector.

(
1 −2 8

3 1 4

)
This is a 2× 3 matrix.

(
2 0 −1 6

)
This is a 1× 4 matrix. It could be considered a “row vector”.


10 −2 8

3 1 −9

11 −2 7

 This is a 3× 3 matrix.
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1.2 Example application: Matrices as linear transformations

One application of matrix algebra is to 3d graphics engines, such as computer aided design
(CAD), or how a video game engine understands the position and movement of objects.
We will use this setting to help us think about the effect of the various matrix operations
that we will be learning how to conduct.

For example, a game understands the position of a sword through vectors x contain-
ing the initial co-ordinates of its vertices (corners).

Let’s say that you have a set of n vectors x1, . . . ,xn containing the co-ordinates of the
vertices of the two-dimensional image of the sword:

xi =

(
xi
yi

)
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Then we can change how the image of the sword appears by applying various matrix oper-
ations to its set of vertices:

• To translate the image of the sword (to shift it up, down, left or right) we add a
vector to each vertex.

For example, adding the vector

(
1
−2

)
would move the image 1 unit to the right

and 2 units down.

• To stretch the image in all directions (i.e. to resize it without distortion), we can
multiply the vertices by a scaling factor α. This is called scalar multiplication.

The action of swinging the sword to a new position may change the orientation of the
image, rotating, distorting and stretching it in more complicated ways. This action can be
encoded in a matrixA, and applying the matrix multiplication to all the position vectors
associated with the sword is how the game figures out where it moves to.

This transformation can be expressed in matrix form as:

y = Ax

Matrix multiplication determines the new position y.
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1.3 Addition and Subtraction

In order to add or subtract two matrices, they must have exactly the same order (both the
same number of rows, and the same number of columns). In this case we add or subtract
each of their corresponding entries:(

a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g f + h

)

Example 1.2.
3 0

1 −2

−4 5

+


−1 −2

8 4

7 2

 =


3− 1 0− 2

1 + 8 −2 + 4

−4 + 7 5 + 2

 =


2 −2

9 2

3 7




1

−3

16

+


−4

7

0

 =


1− 4

−3 + 7

16 + 0

 =


−3

4

16




1

−3

16

+

(
12 4

−5 2

)
Not valid as these matrices do not have the same order.
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Example 1.3. Given that:

A =

(
1 2

−6 3

)
, B =

(
4 −2

5 1

)
, C =

(
7 1 −3

5 3 −1

)

Calculate the following, if they exist:

A+B, A+ C, B − A

Solution:

A+B =

(
1 2

−6 3

)
+

(
4 −2

5 1

)
=

(
1 + 4 2− 2

−6 + 5 3 + 1

)
=

(
5 0

−1 4

)

A+ C does not exist as they do not have the exact same order.

B − A =

(
4 −2

5 1

)
−

(
1 2

−6 3

)
=

(
4− 1 −2− 2

5− (−6) 1− 3

)
=

(
3 −4

11 −2

)
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1.4 Scalar Multiplication

To multiply a matrix by a scalar (a real or complex number, rather than a vector or matrix)
we simply multiply (“scale”) each element of the matrix by that scalar:

α

(
a b
c d

)
=

(
αa αb
αc αd

)

Example 1.4.

4


3 0

1 −2

−4 5

 =


4× 3 4× 0

4× 1 4×−2

4×−4 4× 5

 =


12 0

4 −8

−16 20



7

(
1 −3

0 2

)
=

(
7 −21

0 14

)
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Example 1.5. Given that:

A =

(
1 2

−6 3

)
, B =

(
4 −2

5 1

)
, C =

(
7 1 −3

5 3 −1

)

Calculate the following:

3A, −2B, 5C, 3A− 2B

Solution:

3A = 3

(
1 2

−6 3

)
=

(
3× 1 3× 2

3×−6 3× 3

)
=

(
3 6

−18 9

)

−2B = −2

(
4 −2

5 1

)
=

(
−2× 4 −2×−2

−2× 5 −2× 1

)
=

(
−8 4

−10 −2

)

5C = 5

(
7 1 −3

5 3 −1

)
=

(
5× 7 5× 1 5×−3

5× 5 5× 3 5×−1

)
=

(
35 5 −15

25 15 −5

)

3A− 2B = 3A+ (−2B)

=

(
3 6

−18 9

)
+

(
−8 4

−10 −2

)

=

(
3− 8 6 + 4

−18− 10 9− 2

)

=

(
−5 10

−28 7

)
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1.5 Matrix Multiplication

When we multiply two matrices together, we will obtain a new matrix that may have a
different order. There are two important points to be made here:

• Not every pair of matrices can be multiplied. A×B may not exist!

• Matrix multiplication is a non-commutative operation. This means that A × B
is not equivalent toB × A and does not necessarily yield the same result.

So how can we tell if A × B exists, and what order it should have? If the number of
columns of the first matrix equals the number of rows of the second matrix, then they can
be multiplied, and the other dimensions tell us what kind of matrix we will obtain. In
particular, if A is an m1 × n1 matrix, and B is an m2 × n2 matrix, then we can perform
A × B if and only if n1 = m2, and the result will be a m1 × n2 matrix (the result has the
same number of rows as the first matrix and the same number of columns as the second
matrix).(

a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)

For example, if we multiply a 3 × 1 matrix by a 1 × 2 matrix, this will exist because the
“1”s match, and the result will be a 3× 2 matrix from the other dimensions.

To actually do the multiplication, we can then imagine lifting the rows of the first ma-
trix and overlaying them with the columns of the second, the matched pairs of numbers
are multiplied together and then added up. This is easiest to explain by an example:

(
2 0
1 3

)(
1 −2
−4 5

)
=

(
2× 1 + 0×−4 2×−2 + 0× 5
1× 1 + 3×−4 1×−2 + 3× 5

)

=

(
2 + 0 −4 + 0
1− 12 −2 + 15

)

=

(
2 −4
−11 13

)

10



Example 1.6. Let:

A =

(
1 0

2 −1

)
, C =

(
−1 2

4 5

)

Then:

AC =

(
1 0

2 −1

)(
−1 2

4 5

)
=

(
1×−1 + 0× 4 1× 2 + 0× 5

2×−1 +−1× 4 2× 2 +−1× 5

)
=

(
−1 2

−6 −1

)

CA =

(
−1 2

4 5

)(
1 0

2 −1

)
=

(
−1× 1 + 2× 2 −1× 0 + 2×−1

4× 1 + 5× 2 4× 0 + 5×−1

)
=

(
3 −2

14 −5

)

In this example, AC 6= CA.

In general, the order of matrix multiplication can not be changed. In fact, one order might
not even exist whilst the other does - as in the following example.

Example 1.7. Let,

B =

(
3

−2

)
, C =

(
−1 2

4 5

)

and calculate BC and CB if they exist.

First, as B is a 2 × 1 and C is a 2 × 2 matrix, BC does not exist as the columns

of B do not match the number of rows of C. However, CB does exist, and the result

will be another 2× 1 matrix:

CB =

(
−1 2

4 5

)(
3

−2

)
=

(
−1× 3 + 2×−2

4× 3 + 5×−2

)
=

(
−7

−2

)
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Example 1.8. Given that:

A =

(
1 2

−6 3

)
, B =

(
4 −2

5 1

)

Calculate the following:

A×B, B × A

As A and B are both 2× 2 matrices, both A×B and B ×A will exist and will also be

2× 2 matrices, similar to the example above.

Solution:

A×B =

(
1 2

−6 3

)(
4 −2

5 1

)

=

(
1× 4 + 2× 5 1×−2 + 2× 1

−6× 4 + 3× 5 (−6)(−2) + 3× 1

)

=

(
4 + 10 −2 + 2

−24 + 15 12 + 3

)

=

(
14 0

−9 15

)
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B × A =

(
4 −2

5 1

)(
1 2

−6 3

)

=

(
4× 1 + (−2)(−6) 4× 2 + (−2)× 3

5× 1 + 1× (−6) 5× 2 + 1× 3

)

=

(
4 + 12 8− 6

5− 6 10 + 3

)

=

(
16 2

−1 13

)
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1.6 The Identity Matrix

For each positive integer n, the n × n identity matrix consists of one’s on the diagonal
entries and zeroes elsewhere. That is:

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


and this is the only matrix which satisfies, for a matrixA of appropriate dimensions,

AI = IA = A

So the identity acts like a matrix version of the number “1” in the real numbers.

Consider the 2× 2 and 3× 3 identity matrices:

I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1


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1.7 Zero Matrix

This is a square matrix where every entry is zero. For example:

O =

(
0 0
0 0

)
or O =

0 0 0
0 0 0
0 0 0


It acts like the number 0 in matrix addition and matrix multiplication, so:

AO = O = OA for any matrixA of suitable order.
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1.8 Transpose

Let A be an m × n matrix. This means that A has m rows and n columns of entries. To
obtain the transpose of a matrix A (denoted AT ), swap the rows and columns (or reflect
all of the elements about the diagonal).a b c

d e f
g h i

T

=

a d g
b e h
c f i



Example 1.9.

(
2 −6 1

14 3 −8

)T

=


2 14

−6 3

1 −8


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2 Determinants

Square matrices (with dimensions n × n) have a property called the determinant.
This is a number (i.e. a scalar) associated with the matrix that is somewhat analogous to
magnitude.

The determinant of matrixA can be denoted by det(A) or |A|.

2.1 So what does the determinant mean?

Previouslywesaidmatrixmultiplicationcouldtransformanobject ina3dgraphics engine.

If the matrix A encodes this action of rotating and stretching an object, then the de-
terminant ofA represents the scaling factor:

• If the absolute value is greater than 1, the matrix encodes an area-expanding trans-
formation and the image is larger than the original object.

• If | det(A)| = 1 the matrix is area-preserving.

• If the absolute value is less than 1 (that is −1 < det(A) < 1) then the matrix
encodes an area-contracting transformation that shrinks the image and pulls the
vertices closer together.

A negative determinant further indicates that the orientation of the object is flipped (so
it undergoes a reflection as well as rotation).

In this example, when every point in the square is multiplied by the matrix T with deter-
minant 4, the transformed object is four times as large the original area:
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2.2 Determinant of a 2× 2 Matrix

For a 2×2 matrixA =

(
a b
c d

)
, the determinant is very simple to calculate by multiplying

the diagonal entries:

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

Example 2.1. Given the square matrix

A =

(
3 −1

4 2

)

The determinant is given by:

det(A) = 3× 2− (−1)× 4 = 6 + 4 = 10
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2.3 Determinant of a 3× 3 Matrix

For a 3× 3 matrix, select a row or column (any will suffice, but we usually use the top row)
and multiply each of its entries by the determinant of the corresponding 2 × 2 co-matrix
consisting of the rows and columns that the current entry is not in, and then also multiply
by a positive or negative sign according to the checkerboard pattern:+ − +

− + −
+ − +


Therefore, given a 3× 3 matrixA =

a b c
d e f
g h i

, choosing the top row:

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ = a(ei− fh)− b(di− fg) + c(dh− eg)

Example 2.2.

Find the determinant of

A =


3 0 2

2 0 −2

0 1 1



det(A) =

∣∣∣∣∣∣∣∣
3 0 2

2 0 −2

0 1 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣0 −2

1 1

∣∣∣∣∣− (0)

∣∣∣∣∣2 −2

0 1

∣∣∣∣∣+ 2

∣∣∣∣∣2 0

0 1

∣∣∣∣∣
= 3

(
0× 1− (−2)× 1

)
− 0 + 2

(
2× 1− 0× 0

)
= 3(0 + 2) + 2(2− 0)

= 3× 2 + 2× 2

= 10
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3 Inverse

If a square matrixAhas non-zero determinant, then there exists a unique matrixA−1 with
the same dimensions such that

AA−1 = A−1A = I

this is the corresponding inverse matrixA−1

If the determinant of a square matrix is equal to zero, then that matrix
has no inverse. It is not “invertible”.
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3.1 Inverse of a 2× 2 Matrix

For a 2 × 2 matrix A =

(
a b
c d

)
with non-zero determinant (ad − bc 6= 0), the inverse is

given by:

A−1 =
1

det(A)

(
d −b
−c a

)
This may stated in formula booklets as:

A−1 =
1

|A|

(
d −b
−c a

)
where

|A| = det(A) = ad− bc
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Example 3.1.

Given the square matrix

A =

(
3 −1

4 2

)

The inverse exists as the determinant is:

det(A) = (3)(2)− (−1)(4) = 6 + 4 = 10 6= 0

Then the inverse itself is given by:

A−1 =
1

3× 2− (−1)× 4

(
2 −(−1)

−4 3

)
=

1

6 + 4

(
2 1

−4 3

)
=

1

10

(
2 1

−4 3

)
=

(
1/5 1/10

−2/5 3/10

)

We can check that we have obtained the correct answer by checking that AA−1 = I:

(
3 −1

4 2

)
× 1

10

(
2 1

−4 3

)

=
1

10

(
3× 2 + (−1)× (−4) 3× 1 + (−1)× 3

4× 2 + 2× (−4) 4× 1 + 2× 3

)

=
1

10

(
10 0

0 10

)
=

(
1 0

0 1

)

and similarly

A−1A = I.
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Example 3.2. For the following square matrices, find the inverse matrix if it exists.

A =

(
1 −1

0 2

)
B =

(
1 0

−3 2

)
C =

(
1 1

−1 −1

)

Solution:

All three of these matrices are 2 × 2 and hence are square matrices (the first crite-

ria for whether or not they are invertible).

The determinant of A is (1)(2)−(−1)(0) = 2 6= 0 and hence it has an inverse, given by:

A−1 =
1

(1)(2)− (−1)(0)

(
2 1

0 1

)
=

(
1 1/2

0 1/2

)

The determinant of B is (1)(2)−(0)(−3) = 2 6= 0 and hence it has an inverse, given by:

B−1 =
1

(1)(2)− (0)(−3)

(
2 0

3 1

)
=

(
1 0

3/2 1/2

)

However, the determinant of C is (1)(−1) − (1)(−1) = 0 and hence it’s inverse does

not exist. It is a “singular” matrix.
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3.2 Inverse of a 3× 3 Matrix

There are four basic steps to this method for determining the inverse of a 3× 3 matrix (if
you wish, you can use other methods such as Gaussian elimination):

1. Calculate the “matrix of minors”.

2. Create the Co-factor Matrix.

3. Determine the Adjunct Matrix.

4. Finally, multiply the Adjunct Matrix by 1/Determinant.

Example 3.3. Find the inverse of

A =


3 0 2

2 0 −2

0 1 1


1. Calculate the “matrix of minors”:

To do this, for each element of the matrix: ignore the values on the current

row and column, and calculate the determinant of the remaining values. Then

put these determinants into a matrix.

∣∣∣∣∣0 −2

1 1

∣∣∣∣∣
∣∣∣∣∣2 −2

0 1

∣∣∣∣∣
∣∣∣∣∣2 0

0 1

∣∣∣∣∣
∣∣∣∣∣0 2

1 1

∣∣∣∣∣
∣∣∣∣∣3 2

0 1

∣∣∣∣∣
∣∣∣∣∣3 0

0 1

∣∣∣∣∣
∣∣∣∣∣0 2

0 −2

∣∣∣∣∣
∣∣∣∣∣3 2

2 −2

∣∣∣∣∣
∣∣∣∣∣3 0

2 0

∣∣∣∣∣



=


0× 1− (−2)× 1 2× 1− (−2)× 0 2× 1− 0× 0

0× 1− 2× 1 3× 1− 2× 0 3× 1− 0× 0

0× (−2)− 2× 0 3× (−2)− 2× 2 3× 0− 0× 2

 =


2 2 2

−2 3 3

0 −10 0


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2. Create the Co-factor Matrix:

To turn the matrix of minors into the co-factor matrix, apply a checkerboard

pattern of minus signs on alternate entries.
2 2 2

−2 3 3

0 −10 0

 Applying the sign-switching pattern:


+ − +

− + −
+ − +



Results in the co-factor matrix:


2 −2 2

2 3 −3

0 10 0


3. Determine the Adjunct Matrix (also known as the adjugate or adjoint matrix):

The adjunct matrix is the transpose of the co-factor matrix, which means we

reflect the matrix across the diagonal:
2 −2 2

2 3 −3

0 10 0


T

=


2 2 0

−2 3 10

2 −3 0


4. Finally, multiply the Adjunct Matrix by 1/Determinant:

In Step 1, we already obtained most of the information required to calculate the

determinant. Going across the top row of A and multiplying each entry by the

corresponding co-factor:

det(A) = 3(2) + 0(2) + 2(2) = 6 + 4 = 10

Thus, the inverse of A is given by:

A−1 =
1

10


2 2 0

−2 3 10

2 −3 0

 =


1/5 1/5 0

−1/5 3/10 1

1/5 −3/10 0


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5. We can check that we have obtained the correct answer by checking that AA−1 =

I:
3 0 2

2 0 −2

0 1 1

× 1

10


2 2 0

−2 3 10

2 −3 0



=
1

10


3× 2 + 0× (−2) + 2× 2 3× 2 + 0× 3 + 2× (−3) 3× 0 + 0× 10 + 2× 0

2× 2 + 0× (−2) + (−2)× 2 2× 2 + 0× 3 + (−2)× (−3) 2× 0 + 0× 10 + (−2)× 0

0× 2 + 1× (−2) + 1× 2 0× 2 + 1× 3 + 1×−3 0× 0 + 1× 10 + 1× 0



=
1

10


10 0 0

0 10 0

0 0 10

 =


1 0 0

0 1 0

0 0 1

 Similarly we could check that A−1A = I.
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4 Solving Simultaneous Equations using Matrices

You may have already met pairs of simultaneous linear equations and solved them by
two methods: elimination and substitution. However, they can also be solved using an
alternative matrix method.

4.1 Method

Given a pair of simultaneous equations:

ax+ by = p

cx+ dy = q

1. Write the pair of equations as a matrix equation

AX = B

and extract the matrix of coefficientsA =

(
a b
c d

)
.

2. Calculate the inverse matrixA−1 of the matrix of coefficients.

3. Pre-multiply both sides by the inverse matrix to solve for the vectorX:

A−1AX = A−1B =⇒ X = A−1B

4. From the entries inX, read off the values of x and y.

5. Substitute the values of x and y back into the original equations to verify solutions.
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4.2 Example 1:

Solve for x and y,

5x+ 2y = 10

4x− 3y = 14

Re-writing this as a matrix equation,(
5 2
4 −3

)(
x
y

)
=

(
10
14

)
so we haveAX = B, where

A =

(
5 2
4 −3

)
, X =

(
x
y

)
, B =

(
10
14

)
Then,

A−1 =
1

(5)(−3)− (2)(4)

(
−3 −2
−4 5

)
=
−1

23

(
−3 −2
−4 5

)
and so

X = A−1B =
−1

23

(
−3 −2
−4 5

)(
10
14

)
=

(
58/23
−30/23

)
Thus we find x = 58/23 and y = −30/23.

28



4.3 Example 2:

Solve for x and y,

3x− 5y = 7

2x+ 4y = 20

Re-writing this as a matrix equation,(
3 −5
2 4

)(
x
y

)
=

(
7
20

)
so we haveAX = B, where

A =

(
3 −5
2 4

)
, X =

(
x
y

)
, B =

(
7
20

)
Then,

A−1 =
1

(3)(4)− (−5)(2)

(
4 5
−2 3

)
=

1

22

(
4 5
−2 3

)
and so

X = A−1B =
1

22

(
4 5
−2 3

)(
7
20

)
=

(
64/11
23/11

)
Thus we find x = 64/11 and y = 23/11.

29



5 Eigenvalues and Eigenvectors

5.1 Motivation

Incomputeraideddesign(CAD),agraphicalmodelofaphysicalobjectcanbemanipulated
by applying a linear transformation to the co-ordinates of each mesh point in a wire-frame
diagram. This can be expressed in general matrix form as:

y = Ax

where x is the initial co-ordinate of a point, y is the co-ordinate it gets mapped to af-
ter the manipulation, and A encodes the action of the transformation. We use matrix
multiplication to determine y.

Example 5.1. Consider a two-dimensional graphical model to which the following

transformation matrix is applied:

A =

(
5 2

2 2

)
.

Under the action of this transformation, calculate what happens to points with various

co-ordinates:

i) x1 =

(
3

−4

)
, ii) x2 =

(
2

1

)
, iii) x3 =

(
2α

α

)

Solution:

i) y
1

= Ax1 =

(
5 2

2 2

)(
3

−4

)
=

(
15− 8

6− 8

)
=

(
7

−2

)
.

ii) y
2

= Ax2 =

(
5 2

2 2

)(
2

1

)
=

(
10 + 2

4 + 2

)
=

(
12

6

)
= 6

(
2

1

)
.

iii) y
3

= Ax3 =

(
5 2

2 2

)(
2α

α

)
=

(
10α + 2α

4α + 2α

)
=

(
12α

6α

)
= 6

(
2α

α

)
= 6α

(
2

1

)
.

In the second and third cases, the output vector has the same direction as the input

vector. In particular, any vector with the same direction as these will retain its direction
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after the action of A (i.e. these are vectors for which the action of A does not rotate

them). The magnitude of the vector may change, but the direction is preserved.

Graphically, any point which lies on the line shown will be mapped to a point on the

same line after the transformation. This line could be regarded as a “natural direction”

or “natural axis” of the transformation.

The question is, how many such axes are there for a general transformation matrixA,
and how can we determine them systematically? Furthermore, for vectors that lie on these
axes, how will their magnitude (for points, their distance from the origin) be affected by
the action ofA? This is the eigenvalue and eigenvector problem.

In particular, we want to find the scalar values λ (called eigenvalues) and associated
column vectors x (called eigenvectors) such that:

Ax = λx

To see why these quantities are useful, we will now look at two different physical prob-
lems, where the solution can be found from the eigenvalues and eigenvectors of a matrix
associated with the problem.
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Example 5.2 (Harmonic Oscillators). Consider three objects, each of mass m, coupled

as shown by springs of stiffness (force constant) k. Let x1, x2, x3 represent each object’s

displacement from equilibrium.

It can be shown (by combining Hooke’s law and Newton’s Second Law) that the mo-

tion of these three objects can be modelled by the following set of second-order ordinary

differential equations:

mẍ1 = k(x2 − x1)

mẍ2 = −k(x2 − x1) + k(x3 − x2)

mẍ3 = −k(x3 − x2)

We want to represent this set of ODEs as a matrix problem. To see this, first rewrite

the equations:

mẍ1 = −k
(
x1 − x2 + 0x3

)
mẍ2 = −k

(
− x1 + 2x2 − x3

)
mẍ3 = −k

(
0x1 − x2 + x3

)
We can write these equations as the rows of matrices, and then separate the right-hand-

side by constructing a matrix A of the coefficients of x1, x2, x3:
mẍ1

mẍ2

mẍ3

 =


−k
(
x1 − x2 + 0x3

)
−k
(
− x1 + 2x2 − x3

)
−k
(
0x1 − x2 + x3

)
 = −k


1 −1 0

−1 2 −1

0 −1 1



x1

x2

x3


Thus, we obtain the equivalent matrix equation for this problem:

mẍ = −kAx, where x =


x1

x2

x3

 , ẍ =


ẍ1

ẍ2

ẍ3

 and A =


1 −1 0

−1 2 −1

0 −1 1

 .
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Suppose we seek a solution of the form x = b cos(ωt) with constants ω and b =


b1

b2

b3

.

That is, xi = bi cos(ωt) for i = 1, 2, 3, so each of the masses oscillates with the same

frequency but potentially with different amplitudes.

Twice differentiating this equation for x, we obtain:

ẋ = −ωb sin(ωt)

ẍ = −ω2b cos(ωt) = −ω2x.

Using this relationship and the initial statement mẍ = −kAx, we obtain:

Ax =
−m
k

ẍ =
mω2

k
x,

and so

Ab cos(ωt) =
mω2

k
b cos(ωt)

∴ Ab =

(
mω2

k

)
b, where A =


1 −1 0

−1 2 −1

0 −1 1

 .

Therefore the values of λ = mω2

k
which satisfy this equation are the eigenvalues of matrix

A. They give the frequencies of oscillatory (harmonic) motion, and the corresponding

eigenvectors give the amplitudes of this motion b1, b2, b3. So if the problem was to

determine the possible harmonic frequencies of this vibrating system, they could be

found by:

ω =

√
λk

m
, where λ are the eigenvalues of matrix A.

Solving the eigenvalues and eigenvectors of A will thus give us b and λ from which we

can obtain ω. Therefore we will gain both pieces of information required to fully specify

the solution x = b cos(ωt) and thus fully-understand how this system behaves.
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Example 5.3 (Circuits). Consider the electronic circuit shown.

It has the following equations associated with it, whcih define the three electric

currents:

L
di1
dt

+
1

C

∫ t

0

(i1 − i2)dt+ E1 = 0

1

C

∫ t

0

(i2 − i1)dt− E1 + L
di2
dt

+
1

C

∫ t

0

(i2 − i3)dt+ E2 = 0

1

C

∫ t

0

(i3 − i2)dt− E2 + L
di3
dt

= 0

where E1 and E2 are the initial potentials on the capacitors.

Differentiating each of these equations with respect to t, we obtain:

L
d2i1
dt2

+
1

C
(i2 − i1) = 0

L
d2i2
dt2

+
1

C

(
(i2 − i1)− (i2 − i3)

)
= 0

L
d2i3
dt2

+
1

C
(i3 − i2) = 0

and this can be represented in matrix form by:

L
d2i

dt2
= − 1

C
Ai, where i =


i1

i2

i3

 and A =


1 −1 0

−1 2 −1

0 −1 1

 ,

and L and C are scalar constants.

Letting i = b ejωt, we can obtain Ab = λb where λ = ω2LC. This situation is

therefore mathematically very similar to the previous example, however the practical

interpretation of the eigenvalues is different.
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5.2 Method: Evaluation of Eigenvalues and Eigenvectors

Given a square matrix, we will now consider how we go about finding these eigenvalues
and eigenvectors.

Consider a square matrix,

A =

(
a b
c d

)
When this matrix acts on a column vector x, we obtain a new vector Ax that may be
stretched and rotated in some way. We want to find the solutions to

Ax = λx,

whereλ isascalar, sothatmatrixmultiplicationbyApreservesthedirectionofthevectorx.

For a 2 × 2 matrix A, there are two such eigenvalues λ = λ1, λ2 and their associated
eigenvectors x = e1, e2. Note that if ei is an eigenvector of A with eigenvalue λi, then so
is any scalar multiple of ei, so we can obtain a direction for the eigenvector, and then a
vector in that direction of any magnitude will suffice.

First, we re-arrange the equation to obtain (A − λI)x = 0, where I is the identity
matrix that has 1’s on the diagonal entries and 0’s elsewhere,

I =

(
1 0
0 1

)
Then in order to find the non-trivial solutions (i.e. excluding x = 0) we determine the
eigenvalues by calculating the determinant ofA−λI and solving the values of λ for which
this is zero1.

That is, we solve:

Characteristic equation of matrixA: |A− λI| = 0

1This is because the existance of such a vector is the same as the matrix A− λI being “singular”,

or not invertible, which is equivalent to having determinant zero.
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This will give us the characteristic polynomial (or characteristic equation) of A, and
for a 2×2 matrix will be a quadratic equation. Solving this gives a pair of rootsλ = λ1, λ2.
For each of these, we can then obtain a corresponding non-zero eigenvector x = e1, e2 by
solving:

Ax = λx or (A− λI)x = 0

for x.
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5.3 Examples of calculating Eigenvalues and Eigenvectors

Example 5.4 (2× 2 matrix).

Let A =

(
1 2

3 −4

)
,

then

A− λI =

(
1 2

3 −4

)
− λ

(
1 0

0 1

)
=

(
1 2

3 −4

)
−

(
λ 0

0 λ

)
=

(
1− λ 2

3 −4− λ

)
.

Therefore, we wish to solve

|A− λI| = 0 =⇒

∣∣∣∣∣1− λ 2

3 −4− λ

∣∣∣∣∣ = 0.

Since this is a 2 × 2 matrix, we find the determinant by taking the difference of the

product of the diagonals:

(1− λ)(−4− λ)− (2)(3) = 0,

and so

λ2 + 3λ− 10 = 0 (The characteristic polynomial of matrix A.)

Solving this quadratic equation yields two distinct, real, integer roots:

λ1 = −5, λ2 = 2. These are the eigenvalues of A.

Next, we solve the eigenvectors one at a time. For the first eigenvalue, λ1 = −5, let’s

call the corresponding eigenvector e1 =

(
x

y

)
.

To find the values of the components x and y, we need to solve:

Ae1 = −5e1

which means(
1 2

3 −4

)(
x

y

)
= −5

(
x

y

)
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This yields a pair of simultaneous equations:

x+ 2y = −5x

3x− 4y = −5y

These are linearly dependent (i.e. they are the same equation, just rearranged in dif-

ferent ways), and solving either of them gives y = −3x. If we choose x = 1 (and we

can, since recall that any scalar multiple of the eigenvector will work, so the important

property to preserve is the relative values of the two components), then we will get

y = −3, and so one eigenvector corresponding to λ1 = −5 is:

e1 =

(
1

−3

)
.

Similarly, the second eigenvector (corresponding to eigenvalue λ2 = 2) is

e2 =

(
2

1

)
.

Check this as an exercise.
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Example 5.5 (3×3 matrix). Consider the 3×3 matrix A that has appeared Examples

4.2 and 4.3. We will calculate the three eigenvalues and associated eigenvectors for this

matrix.

A =


1 −1 0

−1 2 −1

0 −1 1

 .

Then |A− λI| = 0 gives:∣∣∣∣∣∣∣∣
1− λ −1 0

−1 2− λ −1

0 −1 1− λ

∣∣∣∣∣∣∣∣ = 0

Recall the method of calculating determinants of 3 × 3 matrices. We select a row

or column (any will suffice, but we usually use the top row) and multiply each of its

entries by the determinant of the corresponding 2× 2 co-matrix consisting of the rows

and columns that the current entry is not in, and then also multiply by a positive or

negative sign according to the pattern:
+ − +

− + −
+ − +

 .

The resulting terms are summed to obtain the determinant.

Hence, in this case (using the top row) we have:

(1− λ)

∣∣∣∣∣2− λ −1

−1 1− λ

∣∣∣∣∣− (−1)

∣∣∣∣∣−1 −1

0 1− λ

∣∣∣∣∣+ 0

∣∣∣∣∣−1 2− λ
0 −1

∣∣∣∣∣ = 0

(1− λ)
(
(2− λ)(1− λ)− (−1)(−1)

)
+
(
(−1)(1− λ)− (−1)(0)

)
= 0

(1− λ)
(
(2− λ)(1− λ)− 1

)
− (1− λ) = 0

(1− λ)
(
(2− λ)(1− λ)− 2

)
= 0

(1− λ)(λ2 − 3λ+ 2− 2) = 0

(1− λ)(λ)(λ− 3) = 0
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Hence there are three eigenvalues: λ = 0, 1, 3.

Note: In this case, we have successfully factorised by keeping out the common

factor of (λ − 1). In general, you are not expected to solve cubic equations.

Therefore, you may be given the eigenvalues and asked to verify them. This

means that you must obtain the characteristic polynomial, and then show that

substituting in the proposed value of the eigenvalue λ satisfies the equation.

e.g. If we had multiplied out the characteristic polynomial to obtain

λ3 − 4λ2 + 3λ = 0, we could verify that λ = 3 is an eigenvalue in the

following way:

(3)3 − 4(3)2 + 3(3) = 27− 4× 9 + 9 = 27− 36 + 9 = 0

Now we must obtain the eigenvectors which correspond to each of these. For a general

value of λ and a corresponding eigenvector x, the equation (A− λI)x = 0 gives:
1− λ −1 0

−1 2− λ −1

0 −1 1− λ



x1

x2

x3

 =


0

0

0


From the components of this we obtain the following three simultaneous equations:

(1− λ)x1 − x2 = 0

−x1 + (2− λ)x2 −x3 = 0

− x2 +(1− λ)x3 = 0

Hence,

i) For the first eigenvalue λ1 = 0:

x1 − x2 = 0 (E1)

−x1 + 2x2−x3 = 0 (E2)

− x2 +x3 = 0 (E3)
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From (E1) we have x1 = x2, and from (E3) we obtain x3 = x2. This is all we need to do

in this case, but we can check the consistency of the equations by using (E4 = E2 +E1)

to eliminate x1:

x2 − x3 = 0 (E4)

and so we see that (E4) is just the same as (E3).

Then we let x2 = α, where α is just an arbitrary constant, and use the previous results

to obtain both other co-ordinates in terms solely of α:

x1 = x2 = α, and x3 = x2 = α.

Hence we have the eigenvector

x1 = α


1

1

1

 .

As before, this represents an infinite set of eigenvectors that all have the same direction

but can be of any non-zero magnitude.

ii) λ2 = 1:

− x2 = 0 (E1)

−x1 + x2−x3 = 0 (E2)

− x2 = 0 (E3)

Clearly (E1) and (E3) are identical and give x2 = 0.

Substituting this result into (E2) then yields x3 = −x1 or x1 = −x3.

Therefore let x1 = β (an arbitrary constant) to obtain:

x2 = β


1

0

−1


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iii) λ3 = 3:

−2x1 − x2 = 0 (E1)

−x1 − x2 −x3 = 0 (E2)

− x2−2x3 = 0 (E3)

Eliminate x1 from (E2) using (E4) = 2(E2)− (E1):

−x2 − 2x3 = 0 (E4)

and then eliminate x2 from (E3) using (E5) = (E3)− (E4). As expected, this results in

the tautology:

0 = 0 (E5)

Then from (E4): x2 = −2x3, and from (E1): x1 = −1
2
x2 = x3. Therefore let x3 = γ,

and we obtain x2 = −2γ and x1 = γ, so that the eigenvector is:

e3 = γ


1

−2

1


The complete solution to the problem is therefore:

λ1 = 0, e1 = α


1

1

1

 ; λ2 = 1, e2 = β


1

0

−1

 ; λ3 = 3, e3 = γ


1

−2

1


You can verify the solutions by calculating the matrix multiplications Ae1, Ae2, Ae3

and checking that we get the product of the corresponding eigenvalue and eigenvector

each time.
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5.4 Unit Vectors

It is sometimes useful to consider “normalised” or “unit” vectors. These have magnitude
(size) equal to 1. To normalise a vector, we find its magnitude and then divide the vector
by this scalar value. The direction is unchanged, so the components in each direction will
still have the same ratio.

A unit vector is one that has magnitude equal to one. Given any vector, v we can
find a unit vector in the same direction by:

v̂ =
v

|v|

Example 5.6. Consider the eigenvectors we found in Example 4.4. The first eigen-

vector is:

e1 =

(
1

−3

)

Therefore it has magnitude:

|e1| =
√

(1)2 + (−3)2 =
√

1 + 9 =
√

10

So a unit vector in the same direction as e1, which we denote by ê1 is:

ê1 =
e1
|e1|

=
1√

(1)2 + (−3)2

(
1

−3

)
=

1√
10

(
1

−3

)
.

Similarly, the second normalised eigenvector is

ê2 =
e2
|e2|

=
1√

(2)2 + (1)2

(
2

1

)
=

1√
5

(
2

1

)
.
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5.5 General Properties of Eigenvalues

Theorem 5.1. The determinant of an invertible square matrix is equal to the product

of it’s eigenvalues. That is, for an invertible n×n matrix A with eigenvalues λ1, . . . , λn:

|A| = λ1λ2 . . . λn

This is because the characteristic polynomial ofA can be factorised in the following way:

|A− λI| = (λ1 − λ)(λ2 − λ) . . . (λn − λ)

and so setting λ = 0 results in |A| = λ1λ2 . . . λn.

Theorem 5.2. The sum of the eigenvalues of a square matrix is equal to the “trace”

of the matrix, that is, the sum of its diagonal elements.

tr(A) = λ1 + λ2 + · · ·+ λn

These two theorems can be used to obtain two eigenvalues of an n × n matrix A from a
pair of simultaneous equations, given that the other (n− 2) are already known.

There are many other properties of eigenvalues and eigenvectors for different classes of
matrices, but they are not within the scope of this course. Matrix algebra is fundamental
to one of the largest and most active areas of pure mathematics, as well as its many physical
applications.
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5.6 Application: Linear stability analysis of systems of ODEs

Eigenvalues are an extremely important concept in algebra, and have many uses when
related to matrices that model physical problems.

One importantapplication is instability analysis forcertainkindsofdynamical systems.

If we have a system of linear ODEs of the form:

dx1
dt

= ax1 + bx2 + cx3

dx2
dt

= dx1 + ex2 + fx3

dx3
dt

= gx1 + hx2 + ix3

we can write it in matrix form as:

Ẋ = AX

Where:

X =

x1x2
x3

 , Ẋ =

ẋ1ẋ2
ẋ3

 , and A =

a b c
d e f
g h i


We say thatA is the Jacobian matrix for this dynamical system.

(The dot above a variable denotes the derivative w.r.t. time)

Such a system has an equilibrium at the origin (where x1 = x2 = x3 = 0), as this
means that:

dx1
dt

=
dx2
dt

=
dx3
dt

= 0

so every variable has zero rate of change with respect to time - i.e. the system is static.
More complex non-linear systems may have other equilibria, or lack one at the origin, but
we will only deal with this case.

A common question in the design of control systems, is when is this equilibrium sta-
ble?
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Stability means that if the system is disturbed from the equilibrium by an arbitrarily small
amount, it will tend to return (small perturbations dissipate). In an unstable system, the
disturbance is amplified and over time the system will move away from the equilibrium.
If this is desirable depends on the context - consider chemical reactions in an industrial
process, some you want to sustain but others could be dangerous.

Returning to eigenvalues then. . .

Stability criterion:

The equilibrium of such a linear ODE system is:

• Stable if all of the eigenvalues of the Jacobian matrix have negative real part.

• Unstable otherwise.
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5.6.1 Example

Consider a process governed by the differential equations:

ẋ = x− y

ẏ = −x+ 2y − z

ż = −y + z

Writing this in matrix form:ẋẏ
ż

 =

 1x− 1y + 0z
−1x+ 2y − 1z
0x− 1y + 1z

 =

 1 −1 0
−1 2 −1
0 −1 1

xy
z


we can see that this system has Jacobian equal to matrixA that we have studied previously.

We check that there exists an equilibrium at the origin. If x = y = z = 0, then clearly
from the original set of equations:

ẋ = ẏ = ż = 0 hence, equilibrium.

(However, note that in this system, this zero-equilibrium is actually part of a family of
equilibria for any case where x = y = z. Can you see why this is the case?)

Now, earlier we found that A had eigenvalues λ = 0, 1, 3. Thus, according to the cri-
terion, the presence of positive, real eigenvalues means that this equilibrium is unstable
and the system will tend to be repelled from it.
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6 MATLAB and Matrices

6.1 Declaring matrices

To name and store a matrix in Matlab, use square brackets and write the list of elements
in each row from left to right, starting with the top row. Separate the elements in each row
by a space, and separate the rows themeselves with a semicolon.

To declare the following matrix:

A =

(
1 2 3
4 5 6

)
we write:

A = [1 2 3; 4 5 6];

6.2 Matrix algebra

Addition, subtraction, scalar multiplication and matrix multiplication all work very sim-
ply in the way you would expect.

A = [1 2; 3 -4];

B = [4 -6; -1 2]

C = A + B (matrix addition)

D = A - B (matrix subtraction)

E = 5*A (scalar multiplication)

F = A*B (matrix multiplication)

Don’t forget that the order of matrix multiplication is very important!
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6.3 Determinant, Transpose and Inverse

Simple commands exist for most important matrix operations.

A = [1 2; 3 -4];

B = transpose(A); (matrixB is the transpose ofA)

C = inv(A); (C is the inverse matrix ofA)

d = det(A); (obtain the determinant ofA)

Remember that the inverse does not exist for a non-square matrix. If you attempt this,
you will receive the error:

Error using inv. Matrix must be square.

and the script will fail. However, you must also remember that the inverse of a square
matrix does not exist if the determinant is zero, and you should always check this before
attempting to calculate the inverse. If you ask Matlab for the inverse of a matrix with zero
determinant it will not fail, and you will simply receive the message:

Warning: Matrix is singular to working precision.

It will be up to you to realise that this means you should not proceed.

6.4 Eigenvalues and Eigenvectors

MATLAB can automatically determine the eigenvalue and eigenvector pairs of a square
matrix for you, using the Symbolic Math Toolbox:

A = [1 2; 3 -4];

B = sym(A);

[vecA,valA] = eig(B);
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This first creates a symbolic version B of the matrix (which Matlab needs to do in order
to handle more abstract mathematical operations) and then produces two matrices, valA
contains the eigenvalues on the diagonal (with zeros elsewhere) and vecA contains the
eigenvectors in each column. The ordering between the two corresponds, so the first col-
umn of vecA is the eigenvector corresponding to the eigenvalue in the first diagonal entry
of valA.

To find a unit vector, we need to first obtain the magnitude of the vector, and then divide
the vector by this magnitude:

X = [3; 17]; (declare a vectorX)

mag = norm(X); (obtain the magnitude ofX and store it asmag)

unitX = X/mag; (obtain the unit vector and store it as unitX)

6.5 Solving simultaneous equations

To use this method does not require any additional commands, but a combination of what
we have learned. Let’s revisit Example 1 from Section 4.2 and carry out the method in
Matlab:

5x+ 2y = 10

4x− 3y = 14

A = [5 2; 4 -3];

B = [10; 14];

X = inv(A)*B

Note that this will provide decimal answers. To obtain the precise fractions that we found
when solving by hand, we simply ask Matlab to convert the answer to a symbolic variable:

sym(X)
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